Population synthesis of common-envelope mergers on the giant branches

Marc van der Sluys

University of Alberta, Edmonton / CITA

Mike Politano, Ron Taam, Bart Willems

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Outline

Introduction

- Stellar mergers
- Stellar collisions
- Population-synthesis models
 - Evolution of the binaries
 - Merger process
- 3

Population-synthesis results

- Properties of the merger populations
- Comparison to single-star populations

Observational counterparts

- Formation of single sdB stars
- Li-rich giants
- Oblate stars
- Asymmetric planetary nebulae
- Conclusions and future work
- Conclusions
- Future work

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Stellar mergers

Occurrence:

- Collisions: $au \sim ext{day}$? (Sills et al. 2001)
- Binary mergers: convective envelope: $\tau \sim \tau_{\rm dyn}$; yr - kyr?
- Binary mergers: radiative envelope: $\tau \sim \tau_{\rm th} \rightarrow \tau_{\rm dyn}$

- A significant fraction of stars (~ 10%?) may be involved in mergers
- Luminous red novae?
- V 838 Mon?

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Merger products

Physics:

- Angular momentum !
- Rapid, differential rotation
- Enhanced mixing
- Magnetic fields
- Enhanced mass loss

Stanford, SOHO

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Merger products

Physics:

- Angular momentum !
- Rapid, differential rotation
- Enhanced mixing
- Magnetic fields
- Enhanced mass loss

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Merger products

Observability:

- Rapid rotation?
- Abundance anomalies?
- Circumstellar material
- Blue stragglers
- Cluster dynamics

- "Weird" binaries
- B[e] stars?
- Hot subdwarfs?
- Asymmetric PNe
- IMBHs?

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Detailed collisions

1.75 M_☉: Collision product Normal star (dashes): Fully mixed model

Use:

- 1D stellar models
- collide them in hydro
- bring remnant in hydrostatic equilibrium
- evolve in 1D
- for low-mass stars: "Entropy" "sorting"

Differences in:

- Timescales
- Luminosities
- Core masses
- Mixing

Glebbeek & Pols, 2008

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Input models

Stellar-evolution code ev (Eggleton, 1971,2, etc.):

- 116: single-star models: 0.5, 0.6, ..., 10.0, 10.5, ..., 20.0 M_☉ (primary, merger remnant)
- 28 brown-dwarf models: 0.01 – 0.60 M_{\odot} (secondary)
- Solar composition; X=0.70, Y=0.28, Z=0.02

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Input models

Stellar-evolution code ev:

- Core mass: $M_c \equiv$ central region where X < 0.1
- Envelope binding energy: $E_{\text{bind}} \equiv \int_{M_c}^{M_s} \left(E_{\text{int}}(m) \frac{Gm}{r(m)} \right) \mathrm{d}m$
- Convective mixing: $I/H_P = 2.0$
- Overshooting: none for M < 1.2 M_{\odot} , $\delta_{
 m ov} =$ 0.12 for $M \ge$ 1.2 M_{\odot}
- Stellar wind: "Reimers" (1975), De Jager et al. (1988)
- Helium-flash-avoidance routine FGB2HB

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Treatment of evolution

Stars

- Constant star-formation rate
- Randomly select 10⁷ binaries:
 - *M*_p: Miller-Scalo IMF
 - $q \equiv M_{s}/M_{p}$: $g(q) dq = \{q^{-0.9}, 1, q\} dq$
- Follow the evolution of track closest in mass to primary
- When mass comes closer to next track, jump with conservation of M_c

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Treatment of evolution

Stars

- Constant star-formation rate
- Randomly select 10⁷ binaries:
 - *M*_p: Miller-Scalo IMF
 - $q \equiv M_{s}/M_{p}$: $g(q) dq = \{q^{-0.9}, 1, q\} dq$
- Follow the evolution of track closest in mass to primary
- When mass comes closer to next track, jump with conservation of M_c

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Treatment of evolution

Orbit

- Assume synchronous rotation on RGB, AGB: $\omega_{p} = \omega_{orb}$
- Mass and AM loss from stellar wind
- If v_{rot} > v_{crit}: lose additional mass and AM until v_{rot} ≤ v_{crit}
- Redistribute AM, so that $J_{\text{tot}} = (I_{\text{p}} + I_{\text{orb}}) \omega_{\text{orb}}$
- $v_{\rm crit} \equiv \{0.1, 1/3, 1.0\} v_{\rm br}$

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Common envelope and spiral-in

CE occurs when:

- $R_{\rm p} > R_{\rm RL,p}$ and $q > q_{\rm crit}(M_{\rm p}, M_{\rm c})$ (Hurley et al. 2002)
- $J_{\text{prim}} > \frac{1}{3}J_{\text{orb}}$ (Darwin 1879)
- Classical energy formalism to determine post-CE orbit (Webbink 1984):

$$\textit{E}_{bind} = \alpha_{CE} \left(\frac{\textit{GM}_{p}\textit{M}_{s}}{\textit{2}\textit{a}_{i}} - \frac{\textit{GM}_{c}\textit{M}_{s}}{\textit{2}\textit{a}_{f}} \right)$$

- $\alpha_{\rm CE} = \{0.1, 0.5, 1.0\}$
 - Merger occurs if after CE: $R_{RL,s} < R_s$

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Merger process

The merger product has:

- the core mass of the original primary
- the maximum mass for which:
 - the star is spinning (sub-)critically ($v_{\rm rot} \leq v_{\rm crit}$)
 - $M_{\rm mrg} \leq M_{\rm p} + M_{\rm s}$
- the evolutionary state of the primary, or later

In addition,

 the surplus mass from the binary does not interact with the star (accretion, tides)

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Evolution of the merger product

After the merger:

- the merger product evolves mostly in the same way as a normal single star
 - e.g. L, R, etc. are identical to those for a star with the same M, M_c
 - difference: $v_{\rm rot}$, hence M
- whenever $v_{rot} \ge v_{crit}$, the star undergoes enhanced mass loss, to ensure that it remains spinning sub-critically
 - this is especially important around core helium ignition

opulation-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Population-synthesis results

	Number	Fraction of previous group	Fraction of initial population
Total binary population:	10,000,000	100%	100%
No MT	7,094,523	71%	71%
Stable MT	1,267,854	13%	13%
Unstable MT:	1,637,623	16%	16%
CE Survivors:	789,807	48%	7.9%
Mergers:	847,816	52%	8.5%
Mergers due to BLOF	689.815	81%	6.9%
Mergers due to tidal capture	158.001	19%	1.6%
Mergers on RGB	738,385	87%	7.4%
Mergers on AGB	109,431	13%	1.1%
WDs	822.773	97%	8.2%
GB/HB stars:	25,041	3%	0.25%
RGB	9,301	37%	0.09%
HB	14,305	57%	0.14%
AGB	1,435	6%	0.01%
Critically rotating RGB stars	297	3.2%	0.003%
Critically rotating HB stars	4,504	31%	0.05%
Critically rotating AGB stars	1	0.1%	0.00001%

1000

objects

merged

Number of

10

5

0

1

2

3

Total mass of merged objects at present epoch (M_@)

4

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Merger properties

Total mass:

RGB HB AGB

5

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Merger population

All merger products:

Merger products on HB:

*o

1000

9

9

of merged objects

Number

Population-synthesis models

Population-synthesis results

Observational counterparts

 v_{rot} (km/s):

Conclusions and future work

Rotational velocities

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Rotational velocities

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Sub-populations

					Fraction with				
Population	N	N Ntot	M	v sin i	$v_{ m rot} \leq$	$\mathbf{v}_{\mathrm{rot}} =$	$\mathbf{M}_{\mathrm{rej}}$	M _{rej} M _{bin}	ΔM_{mrg} M_{mrg} i
			(M⊙)	(km/s)	$0.1 v_{crit}$	V _{crit}	(M⊙)	UIII	
RGB	9301	0.37	1.20	18.4	(0.001)	0.0319	0.63	0.34	0.00
НВ	14305	0.57	1.35	16.1	(0.0000)	0.3149	0.93	0.40	0.12
AGB	1435	0.06	1.34	6.0	0.0683	(0.0007)	0.94	0.42	0.13
Total	25041	1.00	1.28	16.2	0.0043	0.1918	0.81	0.38	0.07

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Dependence on input parameters

Fraction with									
Model	Ν	N _{RGB} N _{tot}	М	v sin i	$v_{ m rot} \leq /$	$\mathbf{v}_{\mathrm{rot}} =$	M _{rej}	M _{rej} M _{bin}	∆M _{mrg} M _{mrg} i
			(M _☉)	(km/s)	$0.1v_{\text{crit}}$	V _{crit}	(M⊙)	UIII	
$\alpha_{\rm CF} = 0.1$	32882	0.29	1.23	16.5	0.0054	0.2726	0.83	0.40	0.10
$\alpha_{\rm CE} = 0.5$	28269	0.34	1.23	16.2	0.0048	0.2201	0.81	0.38	0.08
$\alpha_{\rm CE}$ = 1.0	25041	0.37	1.28	16.2	0.0043	0.1918	0.81	0.38	0.07

Common-envelope parameter

- for a larger α_{CE} , a smaller fraction of all CEs leads to merger
- for a *smaller* α_{CE} , wider binaries can merge
 - merger remnants have more angular momentum

Observational counterparts

Conclusions and future work

Dependence on input parameters

Fraction with									
Model	N	N _{RGB} N _{tot}	М	v sin i	$v_{ m rot} \leq$	$\mathbf{v}_{\mathrm{rot}} =$	M _{rej}	M _{rej}	$\frac{\Delta M_{mrg}}{M_{mrg}}$
		tor	(M⊙)	(km/s)	$0.1 v_{crit}$	Vcrit	(M⊙)	UII	iiig,i
	- Arc		1	4					
$g(q) = q^{-0.9}$	25343	0.35	1.29	16.3	0.0045	0.2012	0.28	0.18	0.07
g(q) = 1	25041	0.37	1.28	16.2	0.0043	0.1918	0.81	0.38	0.07
g(q) = q	24853	0.36	1.29	16.0	0.0049	0.2015	1.10	0.46	0.07

Initial-mass-ratio distribution

- g(q) = q favours equal-mass binaries, $g(q) = q^{-0.9}$ favours extreme mass ratios
- For g(q) = q, secondary masses are larger and more mass is rejected during the merger

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Dependence on input parameters

			Fraction with							
Model	N	N _{RGB} N _{tot}	М	v sin i	$v_{\rm rot} \leq$	$\mathbf{v}_{\mathrm{rot}} =$	M _{rej}	M _{rej} M _{bin}	∆M _{mrg} M _{mrg} i	
			(M _☉)	(km/s)	$0.1 v_{crit}$	V _{crit}	(M_{\odot})			
0.4	05400	0.00	1.00	4.0	0.0050	0.1071	0.00	0.44		
$V_{\rm crit} = 0.1 V_{\rm br}$	25490	0.38	1.20	4.6	0.0058	0.1974	0.90	0.41	0.08	
$V_{\rm crit} = \frac{1}{3} V_{\rm br}$	25041	0.37	1.28	16.2	0.0043	0.1918	0.81	0.38	0.07	
$v_{\rm crit} = v_{\rm br}$	24414	0.33	1.46	47.7	0.0051	0.1343	0.63	0.30	0.02	

Critical rotational velocity

- The observed (projected) rotational velocity scales with our definition of v_{crit}
- For smaller v_{crit}, more mass is ejected during and after merger

104

1000

objects

of merged 100

Number of 100

20

0

40

60

 $v_{\rm rot}\,\sin(i)$ of merged objects at present epoch (km/s)

80

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Comparison to single stars

Merger remnants:

⁴0 1000 stars single Number of 100 2 100 20 40 100 0 60 80 v_{rot} sin(i) of single stars at present epoch (km/s)

Single stars:

RGB HB AGB

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

Comparison to single stars

						Fractio	on with
Ev. phase	population	N	N Ntot	M (M⊙)	v sin i (km/s)	v _{rot} ≤ 0.1 v _{crit}	$f v_{ m rot} = f v_{ m crit}$
RGB	mergers	9301	0.37	1.20	18.4	(0.001)	0.0319
	single	178651	0.61	1.20	1.9	0.9627	0.000
НВ	mergers	14305	0.57	1.35	16.1	(0.0000)	0.3149
	single	104979	0.36	1.58	3.2	0.0886	0.0021
AGB	mergers	1435	0.06	1.34	6.0	0.0683	(0.0007)
	single	10487	0.04	1.45	1.3	0.5657	(0.0000)
Total	mergers	25041	1.00	1.28	16.2	0.0043	0.1918
	single	294117	1.00	1.23	2.3	0.6366	0.0008

Critical rotational velocity

- The observed (projected) rotational velocity is roughly an order of magnitude larger for merger products
- Most merger products on the GBs have ignited helium, most normal single stars have not

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work 0000

sdB stars

Basic properties:

- Core helium burning stars with very thin ($\lesssim 0.02 M_{\odot}$) hydrogen-rich envelope
- In the field \sim 40–70% are found in binaries
- In GCs mostly observed as single sdB stars
- Masses observed $\sim 0.39 M_{\odot} - 0.7 M_{\odot}$ (e.g. asteroseismology)

Observational counterparts

Conclusions and future work

sdB stars

Possible formation channels:

In wide binaries:

One or two phases of stable Roche-lobe overflow

In close binaries:

One or two CE/spiral-in phases

Single sdB stars:

- He-WD–He-WD mergers ($M \gtrsim 0.4 M_{\odot}$)
- Strong mass loss at tip of RGB (*e.g.* capture of planet; Soker & Harpaz, 2000, 2007; Livio & Siess, 1999a,b)
- **CE merger on the RGB** (Soker 1998, Soker & Harpaz 2000, 2007)

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Rotational velocities for merged HB stars

All merger products:

Merger products on HB:

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Rotational velocities

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Core and envelope masses

Helium-core masses:

Envelope masses:

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Losing the envelope

Detailed model of an HB star with initial parameters $M\approx0.59\,M_\odot,$ $M_{env}\approx0.11\,M_\odot$ and $v_{rot}\approx25\,km/s:$

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Lithium-rich giants

Reddy & Lambert 2005; Kumar & Reddy 2009:

Star	[Fe/H]	Teff	$M \star / M_{\odot}$	$\log L/L_{\odot}$	$\log \epsilon(Li)$	12C/13C
HD 77361	-0.02 ± 0.1	4580 ± 75	1.5 ± 0.2	1.66 ± 0.1	3.82 ± 0.10	4.3 ± 0.5
HD 233517	-0.37	4475 ± 70	1.7 ± 0.2	2.0 ^a	4.22 ± 0.11	
IRAS 13539-4153	-0.13	4300 ± 100	0.8 ± 0.7	1.60 ^a	4.05 ± 0.15	20
HD 9746	-0.06	4400 ± 100	1.92 ± 0.3	2.02	3.75 ± 0.16	28 ± 4
HD 19745	-0.05	4700 ± 100	2.2 ± 0.6	1.90 ^a	3.70 ± 0.30	16 ± 2
IRAS 13313-5838	-0.09	$4540~\pm~150$	1.1	1.85 ^a	3.3 ± 0.20	12 ± 2

opulation-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Oblateness

opulation-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Oblateness

Merger products

opulation-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Asymmetric planetary nebulae?

Planetary Nebula M2-9 PRC97-38a • ST Scl OPO • December 17, 1997 B. Balick (University of Washington) and NASA

HST · WFPC2

Introduction	

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Conclusions

Population-synthesis code:

 We produced an initial version of a code with which we can study large populations of merger remnants, albeit with simplified assumptions

Results:

- Common-envelope mergers on the giant branches lead to rapidly rotating merger products
- Merger products through this channel rotate roughly 10× faster than normal single stars
- $\bullet\,$ Roughly 60% of merger products have ignited helium; \sim 40% of normal single stars have not
- In a population with 50% initial binaries, \sim 3.4% of the single stars would be a GB merger remnant

Population-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work

Conclusions

sdB stars:

- Contraction of a merger product due to helium ignition provides a natural way to create rapidly rotating HB stars
- A small fraction of these HB stars have thin envelopes; these stars are close to becoming single sdB stars

Other observables:

 Telltales of (former) rapid rotation may include abundance anomalies, small envelope mass, oblate stars, IR excess and asymmetric nebulae

F				
Introduction 0000	Population-synthesis models	Population-synthesis results	Observational counterparts	Conclusions and future work

To-do list

uiure work

- Use more flexible implementation for mass loss due to winds and rotation
- Include magnetic braking for merger product
- Look for mechanism to remove last bit of HB-star envelope (perhaps on RGB?)
- Combine population synthesis and "entropy" "sorting":
 - do population synthesis to get the mergers
 - use entropy sorting to get a merger product
 - interpolate to create an evolution model
 - evolve it with a detailed stellar-evolution code (including rotation)

opulation-synthesis models

Population-synthesis results

Observational counterparts

Conclusions and future work $\circ \circ \circ \circ$

The End