Population synthesis of common-envelope mergers on the giant branches

Marc van der Sluys

University of Alberta, Edmonton

Mike Politano, Ron Taam, Bart Willems

January 11, 2010

Outline

Common-envelope mergers

- Introduction
- Population-synthesis models
- Observational counterparts
- Conclusions and future work

- LIGO/Virgo
- Binary inspirals
- Markov-chain Monte Carlo
- Conclusions

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Stellar mergers

Occurrence:

- Collisions: $au \sim rac{1}{2}$ day? (Sills et al. 2001)
- Binary mergers: convective envelope: $\sim au_{dyn}$; yr kyr?
- Binary mergers: radiative envelope: $\tau_{th} \rightarrow \tau_{dyn}$

Physics:

- Rapid, differential rotation
- Enhanced mixing
- Enhanced mass loss
- Angular momentum!

Introduction Population-synthesis mode Observational counterpart Conclusions and future wo

Stellar mergers

Observability:

- Blue stragglers
- Rapid rotation?
- Abundance anomalies?
- Cluster dynamics
- "Weird" binaries
- B[e] stars?
- V 838 Mon?
- IMBHs?
- Hot subdwarfs?

GW astronomy with LIGO/Virgo

Detailed collisions

1.75 *M*_☉: Collision product Normal star (dashes): Fully mixed model

Use:

Introduction

- ID stellar models
- collide them in hydro
- bring remnant in hydrostatic equilibrium
- evolve in 1D
- for low-mass stars: "Entropy" "sorting"

Differences in:

- Timescales
- Luminosities
- Core masses
- Mixing

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Input models

Eggleton code TWIN:

- 116 single-star models: $0.5 20.0 M_{\odot}$ (primary, merger remnant)
- 28 brown-dwarf models: $0.01 0.60 M_{\odot}$ (secondary)
- Solar composition; X=0.70, Y=0.28, Z=0.02
- Core mass: $M_c \equiv \text{central region where } X < 0.1$
- Envelope binding energy: $E_{\text{bind}} \equiv \int_{M_c}^{M_s} \left(E_{\text{int}}(m) \frac{Gm}{r(m)} \right) \mathrm{d}m$
- Convective mixing: $I/H_P = 2.0$
- Overshooting: none for $M < 1.2 \, M_{\odot}$, $\delta_{\rm ov} = 0.12$ for $M \ge 1.2 \, M_{\odot}$
- Stellar wind: "Reimers" (1975), De Jager et al. (1988)
- Helium-flash-avoidance routine

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Treatment of evolution

Stars

- Constant star-formation rate
- Randomly select 10⁷ binaries:
 - $M_{\rm p}$: Miller-Scalo IMF • $q \equiv M_{\rm s}/M_{\rm p}$: $g(q) dq = \{1, q, q^{-0.9}\} dq$
- Follow the evolution of track closest in mass to primary
- When mass comes closer to next track, jump with conservation of *M*_c

Orbit

- Assume synchronous rotation on RGB, AGB: $\omega_{p} = \omega_{orb}$
- Mass and AM loss from stellar wind
- If v_{rot} > v_{crit}: lose additional mass and AM until v_{rot} ≤ v_{crit}
- Redistribute AM, so that $J_{\text{tot}} = (I_{\text{p}} + I_{\text{orb}}) \omega_{\text{orb}}$
- $v_{\rm crit} \equiv \{0.1, 1/3, 1.0\} v_{\rm br}$

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Common envelope and spiral-in

- CE occurs when:
 - $R_{\rm p} > R_{\rm RL,p}$ and $q > q_{\rm crit}(M_{\rm p}, M_{\rm c})$ (Hurley et al. 2002)
 - $J_{\text{prim}} > \frac{1}{3}J_{\text{orb}}$ (Darwin 1879)
- Classical energy formalism to determine post-CE orbit (Webbink 1984):

$$E_{\rm bind} = \alpha_{\rm CE} \left(\frac{GM_{\rm p}M_{\rm s}}{2\,a_{\rm i}} - \frac{GM_{\rm c}M_{\rm s}}{2\,a_{\rm f}} \right)$$

•
$$\alpha_{\rm CE} = \{0.1, 0.5, 1.0\}$$

• Merger occurs if after CE: R_{RL,s} < R_s

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Merger product

The merged object has:

- the core mass of the original primary
- the maximum mass for which the star is spinning sub-critically (and $M \le M_p + M_s$)
- the evolutionary state of the primary, or later

The merged object does:

- evolve in the same way as a single star
- lose additional mass to ensure that $v_{\rm rot} \leq v_{\rm crit}$

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Population-synthesis results

	Number	Fraction of	Fraction of
	Number	previous group	initial population
Total binary population:	10,000,000	100%	100%
No MT	7,094,523	71%	71%
Stable MT	1,267,854	13%	13%
Unstable MT:	1,637,623	16%	16%
CE Survivors:	789,807	48%	7.9%
Mergers:	847,816	52%	8.5%
Mergers due to RLOF	689,815	81%	6.9%
Mergers due to tidal capture	158,001	19%	1.6%
Mergers on RGB	738.385	87%	7.4%
Mergers on AGB	109,431	13%	1.1%
WDs	822.773	97%	8.2%
GB/HB stars:	25,042	3%	0.25%
RGB	9.301	37%	0.09%
HB	14,306	57%	0.14%
AGB	1,435	6%	0.01%
Critically rotating RGB stars	297	3.2%	0.003%
Critically rotating HB stars	4.504	31%	0.05%
Critically rotating AGB stars	1	0.1%	0.00001%

Marc van der Sluys Population synthesis of common-envelope mergers on the giant branches

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Dependence on input parameters

Model	Ν	$M(M_{\odot})$	Fraction	$M_{rej}(M_{\odot})$	M _{rej} Mhin	
			$\mathbf{v}_{\mathrm{rot}} \leq 0.1 \mathbf{v}_{\mathrm{crit}}$	$\bm{v}_{rot} = \bm{v}_{crit}$		Dill
standard	25042	1.15	0.0044	0.19	0.65	0.32
$lpha_{ ext{CE}} = 0.5$ $lpha_{ ext{CE}} = 0.1$	28271 32887	1.15 1.10	0.0050 0.0054	0.22 0.27	0.65 0.65	0.32 0.33
$\begin{array}{l} \textbf{g}(\textbf{q}) = \textbf{q} \\ \textbf{g}(\textbf{q}) = \textbf{q}^{-0.9} \end{array}$	24854 10528	4 1.15 0.0050 8 1.20 0.0044		0.20 0.20	0.95 0.10	0.41 0.08
$\label{eq:vcrit} \begin{array}{l} \boldsymbol{v}_{crit} = \boldsymbol{v}_{br} \\ \boldsymbol{v}_{crit} = \boldsymbol{0}.\boldsymbol{1} \ \boldsymbol{v}_{br} \end{array}$	24415 25491	1.30 1.10	0.0054 0.0058	0.13 0.20	0.50 0.75	0.25 0.35
single stars	294118	1.20	0.997	0.0		

Politano et al., in preparation

GW astronomy with LIGO/Virgo

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Merger properties

Total mass:

Marc van der Sluys

Population synthesis of common-envelope mergers on the giant branches

Introduction **Population-synthesis models** Observational counterparts Conclusions and future work

Merger population

All merged objects:

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Politano et al., in preparation

Population-synthesis models

Rotational velocities

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Politano et al., in preparation

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Rotational velocities

Single stars: Merger remnants: 104 104 1000 1000 of merged objects Number of single stars 10 00 Number 5 9 20 60 80 100 20 40 60 80 0 40 0 100 v_{rot} sin(i) of single stars at present epoch (km/s) v_{rot} sin(i) of merged objects at present epoch (km/s) RGB HB AGB

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Politano et al., in preparation

Marc van der Sluys

Population synthesis of common-envelope mergers on the giant branches

sdB stars

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Basic properties:

- Core helium burning stars with very thin ($\lesssim 0.02 M_{\odot}$) hydrogen-rich envelope
- $\bullet\,$ In the field \sim 40–70% are found in binaries
- In GCs mostly observed as single sdB stars
- Masses observed \sim 0.39 M_{\odot} 0.7 M_{\odot} (e.g. asteroseismology)

Introduction Population-synthesis models Observational counterparts Conclusions and future work

sdB stars

Possible formation channels:

In wide binaries:

One or two phases of stable Roche-lobe overflow

In close binaries:

One or two CE/spiral-in phases

Single sdB stars:

- He-WD–He-WD mergers ($M \gtrsim 0.4 M_{\odot}$)
- Strong mass loss at tip of RGB (*e.g.* capture of planet; Soker & Harpaz, 2000, 2007; Livio & Siess, 1999a,b)
- CE merger on the RGB (Soker 1998, Soker & Harpaz 2000, 2007)

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Merged objects on HB:

Rotational velocities for merged HB stars

All merged objects:

$v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Politano et al., in preparation

GW astronomy with LIGO/Virgo

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Rotational velocities

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Core and envelope masses

Helium-core masses:

Envelope masses:

Merged objects

Single stars

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Losing the envelope

Detailed model of an HB star with initial parameters $M\approx0.59\,M_\odot,$ $M_{env}\approx0.11\,M_\odot$ and $v_{rot}\approx25\,km/s:$

Marc van der Sluys Population synthesis of common-envelope mergers on the giant branches

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Lithium-rich giants

Reddy & Lambert 2005; Kumar & Reddy 2009:

Star	[Fe/H]	Teff	$M \star / M_{\odot}$	$\log L/L_{\odot}$	log ∉(Li)	12C/13C
HD 77361	-0.02 ± 0.1	4580 ± 75	1.5 ± 0.2	1.66 ± 0.1	3.82 ± 0.10	4.3 ± 0.5
HD 233517	-0.37	4475 ± 70	1.7 ± 0.2	2.0 ^a	4.22 ± 0.11	
IRAS 13539-4153	-0.13	4300 ± 100	0.8 ± 0.7	1.60 ^a	4.05 ± 0.15	20
HD 9746	-0.06	4400 ± 100	1.92 ± 0.3	2.02	3.75 ± 0.16	28 ± 4
HD 19745	-0.05	4700 ± 100	2.2 ± 0.6	1.90 ^a	3.70 ± 0.30	16 ± 2
IRAS 13313-5838	-0.09	$4540~\pm~150$	1.1	1.85 ^a	3.3 ± 0.20	12 ± 2

Oblateness

1.0

0.5

0.0

-0.

1.0

soonds)

Vorth (millian

Observational counterparts

MacLaurin (1742) spheroids:

5000

4000

Surface temperature of merged objects at present epoch (K)

3000

Oblateness

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Asymmetric planetary nebulae?

Planetary Nebula M2-9 PRC97-38a • ST Scl OPO • December 17, 1997 B. Balick (University of Washington) and NASA

Butterfly nebula (HST)

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Conclusions

Population-synthesis code:

- We produced an initial version of a code with which we can study large populations of merger remnants, albeit with simplified methods
- We find that common-envelope mergers on the giant branches lead to rapidly rotating merger products
- Indirect telltales of (former) rapid rotation may include abundance anomalies, small envelope mass, oblate stars, IR excess and asymmetric nebulae

sdB stars:

- Contraction of a merged object due to helium ignition provides a natural way to create rapidly rotating HB stars
- A small fraction of these HB stars have thin envelopes; these stars are close to becoming single sdB stars

Introduction Population-synthesis models Observational counterparts Conclusions and future work

Future work

- Use more flexible implementation for mass loss due to winds and rotation
- Include magnetic braking for merged object
- Look for mechanism to remove last bit of HB-star envelope (perhaps on RGB?)
- Combine population synthesis and "entropy" "sorting":
 - do population synthesis to get the mergers
 - use entropy sorting to get a merged object
 - interpolate to create an evolution model
 - evolve it with a detailed stellar-evolution code (including rotation)

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

And now for something completely different...

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Gravitational-wave astronomy with LIGO/Virgo: the SPINSPIRAL code

Marc van der Sluys

University of Alberta, Edmonton

Vivien Raymond, Ilya Mandel, Vicky Kalogera

January 11, 2010

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Outline

Common-envelope mergers

- Introduction
- Population-synthesis models
- Observational counterparts
- Conclusions and future work

2 GW astronomy with LIGO/Virgo

- LIGO/Virgo
- Binary inspirals
- Markov-chain Monte Carlo
- Conclusions

LIGO/Virgo

Binary inspirals Markov-chain Monte Carlo Conclusions

Laser Interferometer GW Observatory (LIGO)

Marc van der Sluys

Gravitational-wave astronomy with LIGO/Virgo:the SPINSPIRAL code

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Predicted detection rates

Realistic estimate:

	R	ates (yr-	¹)	Horizon (Mpc)			
	NS-NS	BH-NS	BH-NS	BH-BH			
Initial	0.015	0.004	0.01	32	67	160	
Enhanced	0.15	0.04	0.11	71	149	349	
Advanced	20	5.7	16	364	767	1850	

Plausible, optimistic estimate:

	R	ates (yr-	¹)	Horizon (Mpc)			
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH	
Initial	0.15	0.13	1.7	32	67	160	
Enhanced	1.5	1.4	18	71	149	349	
Advanced	200	190	2700	364	767	1850	

Estimates assume $\textit{M}_{\rm NS}=$ 1.4 \textit{M}_{\odot} and $\textit{M}_{\rm BH}=$ 10 \textit{M}_{\odot}

CBC group, rates document

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Goals for SPINSPIRAL

LIGO

- Show that Markov-Chain Monte Carlo (MCMC) with a large number of parameters (12–15) on LIGO data can be done
- Automated parameter estimation on detected inspiral signal:
 - · Confirm spinning inspiral nature of signal
 - Determine physical parameters (masses, spin, position, ...)

Astrophysics

- BH/NS mass distributions, BH spins and spin alignments
- Merger rates, NS-NS/BH-NS/BH-BH merger ratios
- Gravity in strong regime; NS EoS
- Association of GW and EM events, e.g. GRB
- Evolution of massive stars (in binaries), CEs
- Initial-mass range for BH progenitors

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Inspiral waveforms with increasing spin

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Signal injection into detector noise

- Using 2 4-km detectors H1, L1
- Gaussian, stationary noise
- Do 1.5-pN software injections
- Retrieve physical parameters with 1.5-pN template

Here, $\Sigma SNR = 17$

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Compute posterior distribution

- Find posterior density of the model parameters
- Bayesian approach
- The likelihood for each detector *i* is:

$$L_i(d|\vec{\lambda}) \propto \exp\left(-2\int_0^\infty rac{\left|\widetilde{d}(f) - \widetilde{m}(\vec{\lambda}, f)
ight|^2}{S_n(f)} \,\mathrm{d}f
ight)$$

- Coherent network of detectors:
 - PDF $(\vec{\lambda}) \propto \text{prior}(\vec{\lambda}) \times \prod_i L_i(\boldsymbol{d}|\vec{\lambda})$
- Use Markov-Chain Monte Carlo to sample the posterior

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Markov chains

- Choose starting point for chain: $\vec{\lambda}_1$
- Compute its likelihood: $L_j \equiv L(d|\vec{\lambda}_j)$ and prior: $p_j \equiv p(\vec{\lambda}_j)$
- do j = 1, N
 - draw random jump size $\Delta \vec{\lambda}_j$ from Gaussian with width $\vec{\sigma}$
 - consider new state $\vec{\lambda}_{j+1} = \vec{\lambda}_j + \Delta \vec{\lambda}_j$
 - calculate $L_{j+1} \equiv L(d|\vec{\lambda}_{j+1})$ and $p_{j+1} \equiv p(\vec{\lambda}_{j+1})$
 - if($\frac{p_{j+1}}{p_j} \frac{L_{j+1}}{L_j} > \operatorname{ran}_unif[0,1]$) then
 - Accept new state $\vec{\lambda}_{j+1}$
 - Increase jump size $\vec{\sigma}$
 - else
 - Reject new state; $\vec{\lambda}_{j+1} = \vec{\lambda}_j$
 - Decrease jump size $\vec{\sigma}$
 - end if
 - save state $\vec{\lambda}_{j+1}$
- end do (j)

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

SPINSPIRAL example

Marc van der Sluys Gravitational-wave astronomy with LIGO/Virgo:the SPINSPIRAL code

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

MCMC analyses

MCMC parameters

Masses: $\mathcal{M} \equiv (M_1 + M_2) \eta^{3/5} \& \eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2}$, distance: $\log d_L$, time and phase at coalescence: $t_c \& \varphi_c$, position: R.A. & sin Dec, spin magnitude: $a_{\text{spin}_{1,2}}$, spin orientation: $\cos \theta_{\text{spin}_{1,2}} \& \varphi_{\text{spin}_{1,2}}$, orientation: $\cos(\iota) \& \psi$

MCMC set-up

- 5 serial chains per run, starting from the true parameter values
- Chain length: 5×10⁶ states, burn-in: 5×10⁵ states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform (\sim 2.5 \times longer for 3.5-pN)
- Signals injected in simulated noise for H1L1V @ SNR ≈17.0
- Fiducial binary: $M_{1,2} = 10 + 1.4 M_{\odot}$, $d_{L} = 16-21 \text{ Mpc}$
- Spin: $a_{spin} = 0.0, 0.1, 0.5, 0.8, \theta_{SL} = 20^{\circ}, 55^{\circ}$

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

MCMC results for inspirals with spin

Parameters:

- H1 & L1
- *M* = 10, 1.4 *M*_☉
- $d_L = 18.7 \,\mathrm{Mpc}$
- $a_{\rm spin} = 0.5$, $\theta_{\rm SL} = 20^{\circ}$
- $\Sigma SNR \approx 17.0$
- Black dashed line: true value
- Red dashed line: median
- Δ's: 90% probability

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

MCMC results for inspirals with spin

Spinning BH, non-spinning NS: $10 + 1.4 M_{\odot}$, 16-22 Mpc, $\Sigma SNR=17$

2 detectors, $a_{\rm spin} = 0.0$

2 detectors, $a_{\rm spin} = 0.5$

3 detectors, $a_{\rm spin} = 0.5$

van der Sluys et al., 2008; Raymond et al., 2009

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Accuracy of parameter estimation

2 dete	ctors ((H1 & V):										
$a_{\rm spin}$	$\theta_{\rm SL}$	$d_{\rm L}$	<i>M</i> 1	M_2	\mathcal{M}	η	t _c	$d_{\rm L}$	$a_{\rm spin}$	$\theta_{\rm SL}$	Pos.	Ori.
	(°)	(Mpc)	(%)	(%)	(%)	(%)	(ms)	(%)		(°)	$(^{\circ^2})$	$(^{\circ^2})$
0.0	Ó	16.0	95	83	2.6	138	18	86	0.63	_	537	19095
0.1	20	16.4	102	85	1.2	90	10	91	0.91	169	406	16653
0.1	55	16.7	51	38	0.88	59	7.9	58	0.32	115	212	3749
0.5	20	17.4	53 ^b	42 ^a	0.90	50 ^b	5.4	46 ^a	0.26	56	111 ^a	3467 ^a
0.5	55	17.3	31	24	0.62	41	4.9	21	0.12	24	19.8	178 ^a
0.8	20	17.9	54 ^a	42 ^a	0.86 ^a	54 ^a	6.0	56	0.16	25 ^a	104 ^a	1540
0.8	55	17.9	21	16	0.66	29	4.7	22	0.15	15	22.8	182 ^a
3 detec	ctors (H1, L1 &	V):									
$a_{\rm spin}$	$\theta_{\rm SL}$	$d_{\rm L}$	<i>M</i> ₁	M_2	\mathcal{M}	η	t _c	$d_{\rm L}$	$a_{\rm spin}$	$\theta_{\rm SL}$	Pos.	Ori.
	(°)	(Mpc)	(%)	(%)	(%)	(%)	(ms)	(%)		(°)	(° ²)	(° ²)
0.0	0	20.5	114	90	2.6	119	15	69	0.98 ^b	—	116	4827
0.1	20	21.1	70	57	0.92	72	7.0	60	0.49	160	64.7	3917
0.1	55	21.4	62	48	0.93	68	6.2	51	0.52	123	48.7	976
0.5	20	22.3	54 ^b	44 ^a	0.89 ^a	48 ^b	3.3	52	0.28 ^a	69	28.8	849
0.5	55	22.0	33	25	0.62	43	4.6	23 ^a	0.14	27	20.7	234 ^a
0.8	20	23.0	53 ^b	41 ^a	0.85 ^a	52 ^b	3.8	55	0.17	23 ^a	36.4 ^a	645
0.8	55	22.4	30	22	0.86	40	5.0	26	0.21	21	27.2	288

90%-probability ranges, injection SNR = 17.0

^a the true value lies outside the 90%-probability range

^b idem, outside the 99%-probability range, but inside the 100% range

van der Sluys et al., 2008

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Analysis of a signal with two spins

- 3.5-pN waveform
- 3 detectors (H1,L1,V)
- $\mathcal{M} = 7.6 M_{\odot},$ $\eta = 0.238;$ $M_1 = 11.0 M_{\odot},$ $M_2 = 7.0 M_{\odot}$
- $a_{spin} = 0.9, 0.7$
- $d_{\rm L}=74.5\,{\rm Mpc}$
- ΣSNR=15

van der Sluys et al., in preparation

Marc van der Sluys

Gravitational-wave astronomy with LIGO/Virgo:the SPINSPIRAL code

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Analysis of a signal with two spins

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Non-spinning analysis of a signal with spin

Signal with spins

Recovery with spinning template

Recovery with non-spinning template

van der Sluys et al., in preparation

Marc van der Sluys

Gravitational-wave astronomy with LIGO/Virgo:the SPINSPIRAL code

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

Conclusions GW parameter estimation

GW parameter estimation code:

We have developed the code SPINSPIRAL which can recover the 12–15 parameters of a binary inspiral, including one or two spins, using a Markov-chain Monte-Carlo technique

Accuracies for analysis with 2 detectors:

- For a detection with only 2 detectors, the presence of spin increases the accuracy of parameter estimation
- In this case, we can produce astronomically relevant information, with typical accuracies for lower / higher spin:
 - individual masses: \sim 32% / 39%
 - dimensionless spin: ~ 0.60 / 0.18
 - distance: \sim 55% / 45%
 - sky position: $\sim 500^{\circ^2}$ / 40°^2}
 - binary orientation: $\sim 2500^{\circ^2}$ / 175°^2}
 - time of coalescence: \sim 11 ms / 6 ms

Conclusions GW parameter estimation

Accuracies for analysis with 3 detectors:

- The addition of a third detector increases SNR and hence the accuracy for parameter estimation in general
- Because of the extra timing information, the accuracy of the sky position, and as a result, of the binary orientation gain disproportionally
- For a detection with 3 detectors, the position of the source is restricted to two or one well-defined patch(es) in the sky
- These accuracies can lead to association with an electromagnetic detection (*e.g.* gamma-ray burst)

Inclusion of spin in parameter estimation:

- The inclusion of spin adds a significant number of dimensions and introduces (strong) correlations
- Failing to take into account spin can result to biases in especially mass parameters

LIGO/Virgo Binary inspirals Markov-chain Monte Carlo Conclusions

