How the Giant lost its mantle and became a Dwarf

or

Modelling the evolution of double white-dwarf systems

Marc van der Sluys

Frank Verbunt

Onno Pols

Outline

- Introduction and context
- Observed double white dwarfs
- Common envelope and spiral-in
- Stable first mass transfer
- Unstable first mass transfer
- Conclusions

Astrophysical context

- Possibly progenitors of Supernova type Ia
- Sources of low-frequency gravitational waves

- Binary evolution theory
- White dwarf cooling theory
- Population synthesis

Observed double white dwarfs

WD 0316+768, Adapted from Maxted et al., 2002

Observed double white dwarfs

System	$P_{\mathrm{orb}}\left(\mathrm{d}\right)$	$a_{ m orb}~(R_{\odot})$	$M_1~(M_\odot)$	$M_2~(M_\odot)$	$q_2 = M_2/M_1$	$\Delta \tau$ (Myr)	
WD 0135-052	1.556	5.63	0.52 ± 0.05	0.47 ± 0.05	0.90 ± 0.04	350	
WD 0136+768	1.407	4.99	0.37	0.47	1.26 ± 0.03	450	
WD 0957–666	0.061	0.58	0.32	0.37	1.13 ± 0.02	325	
WD 1101+364	0.145	0.99	0.33	0.29	0.87 ± 0.03	215	
PG 1115+116	30.09	46.9	0.7	0.7	0.84 ± 0.21	160	
WD 1204+450	1.603	5.74	0.52	0.46	0.87 ± 0.03	80	
WD 1349+144	2.209	6.59	0.44	0.44	1.26 ± 0.05		
HE 1414–0848	0.518	2.93	0.55 ± 0.03	0.71 ± 0.03	1.28 ± 0.03	200	
WD 1704+481a	0.145	1.14	0.56 ± 0.07	0.39 ± 0.05	0.70 ± 0.03	-20	
HE 2209–1444	0.277	1.88	0.58 ± 0.08	0.58 ± 0.03	1.00 ± 0.12	500	

See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

Common envelope

- Average orbital separation: $7 R_{\odot}$
- Typical progenitor: $M_{\rm c}\gtrsim 0.3 M_{\odot}$ $R_{*}\sim 100 R_{\odot}$

Common envelope

• Classical α-CE:

Orbital energy is used to expel envelope: $U_{\text{bind}} = \alpha_{\text{CE}} \left[\frac{GM_{1\text{f}}M_2}{2a_{\text{f}}} - \frac{GM_{1\text{i}}M_2}{2a_{\text{i}}} \right]$

(Webbink, 1984)

• Classical α-CE:

Orbital energy is used to expel envelope:

 $U_{\text{bind}} = \left(\alpha_{\text{CE}} \right) \left[\frac{GM_{1\text{f}}M_2}{2a_{\text{f}}} - \frac{GM_{1\text{i}}M_2}{2a_{\text{i}}} \right]$ (Webbink, 1984)

with α_{CE}^{\prime} the infamous Common Envelope parameter

• Classical α-CE:

Orbital energy is used to expel envelope: $U_{\text{bind}} = \alpha_{\text{CE}} \left[\frac{GM_{1\text{f}}M_2}{2a_{\text{f}}} - \frac{GM_{1\text{i}}M_2}{2a_{\text{i}}} \right]$ (Webbink, 1984)

• γ-EE:

Envelope ejection with angular-momentum balance:

$$rac{J_{
m i}\,-J_{
m f}}{J_{
m i}}\,=\,\gamma\,rac{M_{
m 1i}\,-M_{
m 1f}}{M_{
m 1i}\,+M_{
m 2}}$$

(Nelemans et al., 2000)

- EE much faster than nuclear evolution:
 - Core mass does not grow during EE
 - No accretion during EE

- EE much faster than nuclear evolution:
 - Core mass does not grow during EE
 - No accretion during EE
- Radius of the giant gives orbital period
- Envelope binding energy gives α_{CE}

Progenitor models

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Progenitor models

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Progenitor models

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Evolutionary scenarios

MS + MS

MS + MS

 \downarrow Stable M.T. (cons.) \downarrow

 \downarrow Unstable M.T. (γ -EE) \downarrow

WD + MS

WD + MS

 \downarrow Unstable M.T. (α -CE) \downarrow

 \downarrow Unstable M.T. (α , γ -EE) \downarrow

WD + WD

WD + WD

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Confusogram

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Marc van der Sluys – How the Giant lost its mantle and became a Dwarf – NUTGM – October 19, 2006

Marc van der Sluys – How the Giant lost its mantle and became a Dwarf – NUTGM – October 19, 2006

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Marc van der Sluys – How the Giant lost its mantle and became a Dwarf – NUTGM – October 19, 2006

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Conclusions for conservative MT

- More accurate models change α -CE only slightly
- White-dwarf primaries have too low mass, hence orbital periods too long
- We can reproduce perhaps 1–3 out of 10 systems, but with $\alpha_{ce} > 1.6$
- Conservative mass transfer cannot explain the observed double white dwarfs

Evolutionary scenario

MS + MS

 \downarrow Unstable M.T. (γ -EE) \downarrow

WD + MS

 \downarrow Unstable M.T. (α , γ -EE) \downarrow

WD + WD

Angular-momentum balance

• Average specific angular momentum of the system:

$$\frac{J_{\mathrm{i}}-J_{\mathrm{f}}}{J_{\mathrm{i}}} = \gamma_{\mathrm{s}} \frac{M_{\mathrm{1i}}-M_{\mathrm{1f}}}{M_{\mathrm{tot,i}}}$$

Angular-momentum balance

• Average specific angular momentum of the system:

$$rac{J_{\mathrm{i}}-J_{\mathrm{f}}}{J_{\mathrm{i}}} = \gamma_{\mathrm{s}} \; rac{M_{\mathrm{1i}}-M_{\mathrm{1f}}}{M_{\mathrm{tot,i}}}$$

• Specific angular momentum of the accretor:

$$\frac{J_{\rm i}-J_{\rm f}}{J_{\rm i}} = \gamma_{\rm a} \left[1 - \frac{M_{\rm tot,i}}{M_{\rm tot,f}} \exp\left(\frac{M_{\rm 1f}-M_{\rm 1i}}{M_2}\right)\right]$$

• Specific angular momentum of the donor:

$$\frac{J_{\mathrm{i}} - J_{\mathrm{f}}}{J_{\mathrm{i}}} = \gamma_{\mathrm{d}} \frac{M_{\mathrm{1i}} - M_{\mathrm{1f}}}{M_{\mathrm{tot,f}}} \frac{M_{\mathrm{2i}}}{M_{\mathrm{1i}}}$$

 Number of progenitor models: 199 progenitor models, 10+1 observed systems 11 variations in observed mass: -0.05, -0.04, ..., +0.05 M_☉

Number of progenitor models:
 199 progenitor models, 10+1 observed systems
 11 variations in observed mass: -0.05, -0.04, ..., +0.05 M_☉
 Total: 11 × 11 × Σ¹⁹⁸_{n=1} n ≈ 2.4 brasillion

- Number of progenitor models: 199 progenitor models, 10+1 observed systems 11 variations in observed mass: -0.05, -0.04, ..., +0.05 M_☉ Total: 11 × 11 × Σ¹⁹⁸_{n=1} n ≈ 2.4 brasillion
- Filters:

Dynamical MT: $R_* > R_{BGB}$ and $q > q_{crit}$ Age: $\tau_1 < \tau_2 < 13 \text{ Gyr}$ EE-parameter: $0.1 < \alpha_{ce}, \gamma < 10$

- Number of progenitor models:
 199 progenitor models, 10+1 observed systems
 11 variations in observed mass: -0.05, -0.04, ..., +0.05 M_☉
 Total: 11 × 11 × Σ¹⁹⁸_{n=1} n ≈ 2.4 brasillion
- Filters:

Dynamical MT: $R_* > R_{BGB}$ and $q > q_{crit}$ Age: $\tau_1 < \tau_2 < 13 \text{ Gyr}$ EE-parameter: $0.1 < \alpha_{ce}, \gamma < 10$

• Candidate progenitors left: $\sim 204\,000$

Results: $\gamma_s \alpha_{ce}$

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Results: $\gamma_d \gamma_a$

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Results: overview

 $0.8 < \alpha_{ce} < 1.2, \ 1.46 < \gamma_s < 1.79, \ 0.9 < \gamma_{a,d} < 1.1 \text{:}$

System	1: $\gamma_s \alpha_{ce}$	2: $\gamma_s \gamma_s$	3: $\gamma_a \alpha_{ce}$	4: $\gamma_a \gamma_a$	5: $\gamma_d \alpha_{ce}$	6: $\gamma_d \gamma_a$	Opt. res.	Best prescr.	
0135	_	+	+	_	+	+	+	2,3,5,6	
0136	+	+	+	+	+	+	+	1–6	
0957	+	+	—	+	+	+	+	1,2,4,5,6	
1101	+	+	+	—	+	+	+	1,2,3,5,6	
1115	+	+	+	+	+	+	+	1–6	
1204	—	+	+	+	+	+	+	2–6	
1349	+	+	+	+	+	+	+	1–6	
1414	—	+	—	+	—	+	+	2,4,6	
1704a	+	+	—	—	—	—	+	1,2	
1704b	+	+	—	+	+	+	+	1,2,4,5,6	
2209	+	+	_	_	+	+	+	1,2,5,6	

Results: overview

 $0.8 < \alpha_{ce} < 1.2, \ 1.46 < \gamma_s < 1.79, \ 0.9 < \gamma_{a,d} < 1.1:$

System	1: $\gamma_s \alpha_{ce}$	2: $\gamma_s \gamma_s$	3: $\gamma_a \alpha_{ce}$	4: $\gamma_a \gamma_a$	5: $\gamma_d \alpha_{ce}$	6: $\gamma_d \gamma_a$	Opt. res.	Best prescr.
0135	_/_	$+/\sim$	$+/\sim$	_/_	$+/\sim$	$+/\sim$	+/~	2,3,5,6
0136	+/+	+/+	$+/\sim$	$+/\sim$	+/+	+/+	+/+	1,2,5,6
0957	+/+	+/+	_/_	+/-	+/+	+/+	+/+	1,2,5,6
1101	$+/\sim$	+/-	+/-	_/_	$+/\sim$	$+/\sim$	+/~	1,5,6
1115	$+/\sim$	+/+	$+/\sim$	$+/\sim$	+/+	+/+	+/+	2,5,6
1204	_/_	+/-	+/-	+/-	+/-	+/+	+/+	6
1349	+/+	+/+	+/+	+/+	+/+	+/+	+/+	1–6
1414	_/_	+/+	_/_	+/+	_/_	+/+	+/+	2,4,6
1704a	+/-	+/-	_/_	_/_	_/_	_/_	+/-	1,2
1704b	+/-	+/-	_/_	+/-	+/-	+/-	+/-	1,2,4,5,6
2209	+/+	+/+	_/_	_/_	+/~	+/+	+/+	1,2,6

Results: example solution

Marc van der Sluys - How the Giant lost its mantle and became a Dwarf - NUTGM - October 19, 2006

Results: solutions

WD	Mthd.	γ_1	γ 2,	Δτ (Myr)	M_{1i}	M_{2i}	$P_{\rm i}$	<i>P</i> _m	$M_{1\mathrm{f}}$	M_{2f}	P_{f}
			α_{ce2}	Obs	Mdl	M_{\odot}	M_{\odot}	d	d	M_{\odot}	M_{\odot}	d
0135	$\gamma_d \gamma_a$	1.11	0.94	350	118	3.30	2.90	36.28	41.10	0.47	0.42	1.56
0136	$\gamma_d \gamma_a$	0.96	1.05	450	450	1.70	1.59	106.1	371.4	0.37	0.46	1.41
0957	$\gamma_d \gamma_a$	1.00	1.01	325	317	1.98	1.83	26.17	79.26	0.33	0.37	0.06
1101	$\gamma_d \gamma_a$	1.10	0.98	215	322	2.87	2.34	22.02	28.23	0.39	0.34	0.14
1115	$\gamma_d \gamma_a$	0.97	1.04	160	240	5.42	3.42	201.2	1012.	0.89	0.75	30.09
1204	$\gamma_d \gamma_a$	1.09	0.92	80	100	3.34	2.98	15.47	19.99	0.47	0.41	1.60
1349	$\gamma_d \gamma_a$	0.95	0.98	0	101	1.86	1.81	63.44	241.2	0.35	0.44	2.21
1414	$\gamma_d \gamma_a$	0.95	0.99	200	188	3.51	3.09	70.81	358.3	0.52	0.66	0.52
1704a	$\gamma_d \gamma_a$	1.11	1.13	-20	52	2.06	1.88	40.37	65.66	0.51	0.36	0.14
1704b	$\gamma_d \alpha_{ce}$	1.03	0.15	20	182	1.68	1.65	212.1	478.6	0.41	0.58	0.14
2209	$\gamma_d \gamma_a$	1.04	1.05	500	340	4.15	2.94	98.45	294.3	0.63	0.63	0.28

Conclusions

- Conservative mass transfer cannot explain the observed double white dwarfs
- Unstable envelope ejection can do this
- Several EE descriptions can reconstruct observed masses and periods
- $\gamma_s \gamma_s$ and $\gamma_d \gamma_a$ can in addition explain most observed cooling-time differences