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Werkcollege, Cosmology 2016/2017, Week 4

These are the exercises and hand-in assignment for the 4th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 4.2 below.

Flux and intensity

In the lecture we discussed the fundamental concepts flux (the energy passing through a unit
surface per unit time) and intensity (flux per solid angle). In S.I. units, flux is expressed in units
of [Wm™] and intensity in [W m~2sr™!]. In many practical applications, it is more useful to
specify the flux density (or specific flux), i.e., the flux per unit wavelength (F,) or frequency
(F,) interval, and the corresponding quantities for the intensity (/, /,). The flux density is often
expressed in Jy, where 1 Jy = 1072 Wm 2 Hz". The total flux is then, in principle, found by
integration over all wavelengths (or frequencies):

F:fF/{d/l (4.0.1)

or

F= f F,dv (4.0.2)

In practice, measuring the specific flux at all wavelengths is difficult, and we sometimes also
refer to the flux integrated over a specific wavelength region, such as a particular photometric
band.

41 F,andF,

Show that F, and F, are related as
—_— === (4.1.3)
c

4.2 Flux of astronomical objects

The brightest star in the sky, Sirius, has a radius of about 1.75 Ry and a temperature of 9900 K.
Its distance is 2.6 pc.

1. Approximating the spectrum of Sirius by a black-body with T = 9900 K, calculate the
specific intensity 7, of light emitted at 5500 A (i.e. at the centre of the V-band)

2. Making the approximation that /, is constant over the wavelength range covered by the
V-band, and assuming that the bandwidth is Aly = 900 A, what is the V-band intensity
Iy of the light emitted by Sirius?

3. Calculate the V-band flux from Sirius measured above the Earth’s atmosphere. (Hint:
you may make use of the fact that the intensity of black-body radiation is independent of

the viewing angle. The integral fon/z sinfcos0dl = % might be useful).



4. How many V-band photons would enter the aperture of the Hubble Space Telescope per
second if it were pointed at Sirius? Assume that HST has a circular aperture with a diam-
eter of 2.4 m. You can also assume that all photons have the same energy, corresponding
to A = 5500 A.

4.3 Flux, Magnitude and Surface Brightness

The flux density received from the star Vega (above the Earth’s atmosphere) is F, = 3.6 x 10723
W m~2 Hz™! in the visual region of the spectrum. Vega has a visual magnitude my = 0.

1. Calculate the visual magnitude of a source with a flux density of F = 1Jy

2. The faintest stars visible to the unaided eye under a dark sky have visual magnitudes
V = 6. Calculate the limiting sensitivity of the eye in Jy.

3. In astronomy, the term surface brightness is sometimes used instead of intensity. The
natural night sky has an average visual surface brightness of about 22 mag arcsec™? at
new Moon (meaning that the flux received from one square arcsecond of blank sky is the
same as that received from a 22nd magnitude star). Over how large an area of the sky
does one need to integrate to get a flux similar to that of the faintest naked-eye stars?

Formulae and constants

Black-body radiation:

_ 203 1
I, = 2 eMIkT _ 1
2hc? 1
I/l =

A3 ehe/AT _ 1

Radius of the Sun: R, = 7 x 10® m
1 pc=3.09x%10"%m
Planck’s constant: & = 6.626 x 1073* m* kg s!

Boltzmann’s constant: k = 1.38 x 1072* m? kg s72 K™!



Werkcollege, Cosmology 2016/2017, Week 5

These are the exercises and hand-in assignment for the 5th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 5.5 below.

5.1 Distance and distance modulus

Show that an error or uncertainty of 0.1 magnitudes in the distance modulus, m — M, is roughly
equivalent to a 5% error in the distance, D

5.2 Moving cluster method

-

1.conyv

Fig. 1: The star cluster discussed in Problem 5.2.

A star cluster is observed to have a proper motion g = 0.110” yr~! and radial velocity v, = 40
km s™!. The proper motions of stars in the cluster appear to be converging towards the point
P.ony, located at an angle of 8 = 30° from the centre of the cluster on the sky.

1. Calculate the distance to the cluster

2. What was the smallest distance between the Sun and the cluster, relative to the current
distance?

3. When did the closest passage occur? Show that this can be calculated without knowing
the distance of the cluster!

4. Assuming effects of stellar evolution and extinction are negligible, when will the apparent
brightness of the cluster have decreased by 1 magnitude?




5.3 Cepheids

The relation between the mean apparent visual magnitude my and the period P (in days) for
Cepheids in the Large Magellanic Cloud (LMC) is observed to be

my = —2.5log,, P+ 17.0 (5.3.1)

For the Galactic Cepheid 6 Cep, a trigonometric parallax of 3.8 x 107> arcseconds is observed.
0 Cep has log,, P = 0.73 and a mean apparent magnitude my = 3.8.

In the following, assume that Cepheids everywhere follow a universal period-luminosity rela-
tion. You can ignore the effects of interstellar extinction (or, to put it differently, assume that all
measurements have been corrected for this effect).

1. Find the distance to the LMC.

2. A Cepheid in the galaxy M100 has apparent mean magnitude my = 27.1 and period
P =10 days. Find the distance to M100.

5.4 Baade-Wesselink method

This exercise is taken from the book “Galactic Dynamics”, J. Binney & M. Merrifield

A star expands in a spherically-symmetric manner with radial velocity v,. Defining a spher-
ical coordinate system on the surface of the star with the polar axis aligned along the line of
sight, show that the measurable flux-weighted mean line-of-sight velocity will be

foﬂ/z 1(0) cos* 6sin §do

(5.4.1)

leS = vl’ 71./2
fo 1(6) cos Osin 6 d6

Hence show that, for a star of uniform brightness, p = v,/vios = 1.5. In reality, a star will not
appear uniformly bright: its opacity means that near the edge of the star (its “limb”’) one cannot
peer so far into its atmosphere, so one sees the less bright outer layers. A reasonable analytic
approximation to this limb darkening is given by 1(6) = 1(0)(0.4 + 0.6 cos ). In this approxi-
mation, show that p = 24/17.

5.5 K-corrections

The K-correction is the difference between the observed magnitude m,(z) for a source at red-
shift z and the magnitude that would be observed if the source were at rest, m,q:

My = —2.5logy, ff(/l)S (4)dA + const (5.5.1)
Mmes(z) = —2.5log, ff(/l’)S [A(1 +z)]dA” + const (5.5.2)
(5.5.3)

In addition to the redshift z, the K-correction depends on the spectrum of the source (here
expressed as a function of wavelength, f[1]) and the spectral response of the system used for
the observations, S(1). The K-correction is a purely instrumental effect that simply accounts
for the fact that light emitted at wavelength A’ is observed at wavelength A. It does not take into
account the cosmological effects of the redshift due to the expansion of the Universe.
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1. Show that (5.5.2) and (5.5.1) lead to the following expression for the K-correction:

K = Mobs — Mrest (554)
251 [ f()S(2)da
08 [ AL/ + 215 (D) da

+2.51og,(1 +2) (5.5.5)

2. Find and write down the equivalent expression for the K-correction in terms of the spec-
trum as a function of frequency, f(v)

3. Calculate the K-correction for a source with a power-law spectrum, f(1) « A%, To sim-
plify the calculations, you can approximate the bandpass transmission curve S(A1) as a
box function, i.e., assume that S(A) is a (positive) constant for 4; < 4 < A, and zero
elsewhere.

Formulae and constants

Distance modulus (D in pc):

m—M =5log,,D -5
Black-body radiation:

203 1
VT T2 gIkT _
2hc? 1

L= B el _
Radius of the Sun: R, = 7 X 103 m

1 pc =3.09 x 10'® m

Planck’s constant: & = 6.626 x 1073* m? kg s!

Boltzmann’s constant: k = 1.38 x 1072 m? kg s72 K™!



Werkcollege, Cosmology 2016/2017, Week 6

These are the exercises and hand-in assignment for the 6th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 6.1 below.

6.1 Mass distribution of the Milky Way

a. Assuming that the mass distribution in the Milky Way is dominated by a spherically
symmetric dark matter halo, show that a flat rotation curve implies the following density

profile:
2

V. _
pn(R) = %R 2 6.1.1)

where R is the galactocentric distance and v, the circular velocity.

b. For a circular velocity v. = 200 km/s, Ry = 8 kpc, calculate the density of the dark matter
halo near the Sun.

In reality, other components of the Milky Way make non-negligible contributions to the mass.
Near the Sun, the density of the stellar disc is about p (Ry) = 0.08 My pc™>. Assume that the
Sun is located at the midplane of the disc and that the vertical density distribution of the disc is
exponential with scale height z,; = 300 pc.

c. At Ry, how far above the Galactic plane, z, is the density of the disc equal to that of the
dark halo estimated above? (you may assume that pj, is independent of z for fixed R = Ry).
If you did not find an answer in 6.1.b you may assume p;(Ry) = 0.02 M, pc~* but note
that this is not the correct answer.




6.2 Two-body relaxation

The process of two-body relaxation plays a very important role in stellar dynamics. Over time,
it drives the distribution of stellar velocities towards a Maxwellian equilibrium distribution,
so that any memory of the initial conditions will eventually be erased. For the typical stellar
densities and relative velocities encountered in galaxies the two-body relaxation time scale is,
however, very long, so that present-day galaxies still retain some memory of their formation
conditions. In this exercise we go through the derivation of the two-body relaxation time scale.

m Y|

m K

Consider an encounter between two stars. Assume for simplicity that both stars have the same
mass, m. We use a coordinate system in which one star is initially moving along a straight line
with velocity vy, equal to the typical relative velocities V of stars in the system, and the other
is stationary. Continuing along this path, the minimum separation between the two stars ((the
impact parameter) will be S (see figure), and the star will experience an acceleration a due to
the mutual gravitational attraction between the two stars. Clearly, by Newton’s 3rd law, the
other star will experience an acceleration of the same magnitude but opposite direction. The
component of a perpendicular to vy, a,, will produce a net velocity v, perpendicular to v after
the encounter.

One distinguishes between strong and weak encounters, where an encounter is said to be
strong if the smallest distance of the stars during the encounter () is such that the (absolute)
potential energy |U(B)| is equal to (or greater than) the mean kinetic energy of a star.

a. Show that a strong encounter corresponds to an impact parameter

2Gm
V2

B< (6.2.1)

In the solar neighbourhood, the mean volume density of stars is about n = 0.1 pc™>. Typical
relative velocities are 10 km/s, and the average mass of a star can be taken to be m = 1M,

b. Show that the mean rate of strong encounters per star is

dn
—= = 4GP nm*V > (6.2.2)
dr
Hence, demonstrate that the Sun is unlikely to have experienced a strong encounter in its

lifetime.

From the above, it follows that most stellar encounters are of the weak type. This means that
the velocity change of a star, during any one encounter, is typically small (v, < v)). Itis the
cumulative effect of many distant encounters that will, eventually, be important. For further
calculations, we will thus evaluate the forces and accelerations as if the first star continues
moving along the original path and the second star remains stationary.



¢. Under these assumptions, show that the acceleration of the star perpendicular to vy, inte-
grated over all positions along the path, produces a perpendicular velocity

y, =22 (6.2.3)
Vil

You may find the following integral useful:

dx 2ax + b
=2 (6.2.4)
f X VX AVX

where X = ax? + bx + ¢ and A = 4ac — b*.

For relative velocities V' ~ v and stellar density n, the number of encounters with impact
parameter between 8 and 5 + dB in a small time step dr will be

d*Nene = 2780V dBdt (6.2.5)

Since the encounters may occur in random directions, the total effect of many encounters (AV)
is found by adding the contributions of each encounter (6.2.3) quadratically,

AV? = Z V2 (6.2.6)

d. Hence show, by integrating over impact parameters in a range SBnin < 8 < Bmax, that the
total (average) velocity change in a small time step df is

2 2
8nG*m*n n (’Bmax)dt

2y
<dV > - 14 ﬁmin

(6.2.7)

It is not obvious what to pick for By, and Bax, but since only the logarithm of the ratio of
these two quantities enters in the expression, their exact values are not important. Usually, it is
reasonable to assume InA = In (%) ~ 10. The quantity In A is also known as the Coulomb
logarithm.

Finally, the two-body relaxation time scale, t..x, 1S now defined as the time that it takes
for the effect of the cumulative distant encounters to produce a velocity change similar to the

average relative velocities of the stars, (dV?) = V2.

e. Assuming that the density and average relative velocities are constant in time, show that
this is now given as
V3
felax = =——————
T R G2m2n In A

which is the expression discussed in the lecture.

(6.2.8)

10



Formulae and constants

Distance modulus (D in pc):

m—M =5log,,D -5
Black-body radiation:

_ 203 1
I, = L |
2hc? 1
I/l =

A3 ehe/AT _ 1

Radius of the Sun: R, = 7 x 10® m

Mass of the Sun: M, = 2 x 10% kg

1 pc =3.09 x 10'® m

Planck’s constant: & = 6.626 x 107* m? kg s~!
Boltzmann’s constant: k = 1.38 X 1072 m? kg s2 K!

Gravitational constant: G = 6.673 x 107" m? kg~! s72

11



Werkcollege, Cosmology 2016/2017, Week 7

These are the exercises and hand-in assignment for the 8th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 7.2 below.

7.1 Rotation of ‘“Spiral Nebulae”

In 1914, V. M. Slipher deduced from spectroscopic observations of the Sombrero galaxy (NGC 4594)
a rotational velocity of about 100 km/s (at 20” from the nucleus). Slipher had also measured
positive radial velocities for many spiral “nebulae”, often several hundred kmy/s.

Around the same time, Adriaan van Maanen compared several images of M101 taken over
a period of about 15 years and measured an annual rotation of 0.022" at a distance of 5’ from
the centre (meaning that, according to van Maanen’s measurement, a point located 5’ from the
centre would move 0.022” in a year). Van Maanen’s measurement was used by Harlow Shapley
in the “great debate” as one argument against the idea that spiral nebulae are external galaxies
similar to the Milky Way.

Let us now explore some of the implications of these measurements:

1. Based on van Maanen’s measurement, what is the rotation period of M101 (in years)?

2. Shapley had estimated that the Sun is located about 15 kpc from the centre of the Milky
Way. If the Sun is orbiting around the centre of the Milky Way with the same period
as van Maanen’s measurement implied for M101, what would be the speed of the Sun?
In km/s? In units of ¢, the speed of light? Would you agree with Shapley that this is
unreasonable?

3. If, on the other hand, M101 rotates as fast as NGC 4594 (100 kmy/s), what would be the
distance of M101? Does this seem more reasonable? Why / why not?

Both Slipher’s and van Maanen’s observations were extremely challenging at the time. An
angle of 0.022” is tiny. G. W. Ritchie had already measured two of van Maanen’s plates before
and found no rotation. The spectroscopic measurements were based on exposures that had to
extend over many hours, and not everybody believed Slipher’s radial velcities, either.

4. The “plate scale” on the photographs used by van Maanen was about 30” mm™'. For two

observations made 15 years apart, what is the shift measured by van Maanen in mm?

5. If you had been attending the debate and knew what was known then, what would you
have concluded about the galactic or extragalactic nature of spiral nebulae?

12



7.2

Radiation Pressure and Radial Velocities

In the “great debate”, neither Shapley nor Curtis had a good explanation for the positive radial
velocities of the nebulae. Today we know that this is due to the expansion of the Universe itself,
but cosmology was still in its infancy in the 1920s and most people believed in a static Universe.
Shapley suggested, somewhat hand-wavingly, that the nebulae might be accelerated by radiation
pressure from the Milky Way. However, Henry Norris Russell was quick to demonstrate this
cannot plausibly work. In this assignment we examine some of Russell’s arguments.

Russell made a few simple assumptions:

1.

Masses of the nebulae can be estimated from their rotation, assuming the standard New-
tonian formula for circular rotation (but note that, strictly speaking, this assumes a spher-
ically symmetric mass distribution). In 1921, such measurements were available for two
nebulae: M31 and NGC 4594.

The plane of a nebula is perpendicular to the line-of-sight towards the Milky Way.

A nebula absorbs all the radiation from the Milky Way that falls upon it.

. As seen from a nebula, the Milky Way occupies half the sky.

. Seen from a nebula, the intensity of the light from the Milky Way is similar to that seen

from Earth.

. The intensity of the Milky Way corresponds to 3.5% of the flux from a 1st magnitude star

per square degree (this number came from measurements by the Dutch astronomer Pieter
van Rhijn, a student of Kapteyn). Such a star is a factor of 10%#<1+26:7 = 1 2 x 10! times
fainter than the Sun.

. Two measures of the “radius” of a nebula were considered: 1) an “inner” radius r, con-

taining the majority of the mass, and 2) an ”outer” radius R that represents the maximum
area on which the radiation pressure would act.

The momentum of a photon (or a collection of photons) with energy E is p = E/c. Also, recall
that pressure is force per area.

e Start by calculating the radiation pressure from a square degree of the Milky Way, seen

from a nebula. Show that this pressure is

L
P=23x10"1"——
c(1AU)

where 1 AU = 1 astronomical unit = the distance from the Sun to the Earth, L is the
luminosity of the Sun, and c is the speed of light.

e Next, show that the force on the nebula due to radiation pressure from by a whole hemi-

sphere is
D’R’L,,

F=75x107" :
c(1AU)

for distance D.

13



Hint: For radiation originating somewhere on the hemisphere, only the component of

the momentum vector perpendicular to the surface of the nebula (p, in the figure below)
. . . 2 .
contributes to the acceleration. The integral fon/ sinfcos 0df = %

b
0 DL

e Finally, show that the acceleration produced by radiation pressure is then

L.G DR?

A=75x10"1 -
c(1AU)? rv?

for “inner” radius r, “outer” radius R, circular velocity v at r. G is the gravitational
constant.

Some of the assumptions made here (e.g. #4) may seem very unrealistic today, but it is
important to keep the context of this calculation in mind. Russell’s aim was to examine whether
radiation pressure could significantly affect the kinematics of nebulae, given Shapley’s view
that the Milky Way was very large, and the nebulae all essentially part of the Milky Way.

One of the few nebulae for which the necessary observations were available in 1921 was the
“Sombrero galaxy”, NGC 4594. NGC 4594 has a radial velocity of +1000 km/s. For r and R,
values of r = 150” and R = 210” may be assumed, as well as a rotational velocity of v = 415
km/s. The distance was very uncertain, but Russell assumed a distance of 1.43 Mpc or 4.4 x 10??
m.

e Under the above assumptions, calculate the current acceleration of the Sombrero galaxy
due to radiation pressure

e [f the acceleration had remained constant, and the Sombrero were initially at rest, how
long would it have taken to accelerate to the current radial velocity?

e How far would the Sombrero have moved in this time?

Of course, the calculation above is extremely simplified. Which effects have been ignored?
How would the calculation change (qualitatively) if these were included?

14



7.3 Hot gas in dark matter halos

In the classical picture, gas is shock-heated as it falls into dark matter halos and must cool
before it can form stars. The rate at which the gas can cool is very sensitive to the composition,
because gas that is enriched in heavy elements can cool more efficiently via a large number of
atomic line transitions.

Recall that the r.m.s. velocity of particles in a gas with temperature 7 is given by

3kT
Vims = A[—— (7.3.1)
u

where u is the mean molecular weight, u ~ 10727 kg for a highly ionized plasma of typical
composition and k is Boltzmann’s constant, k = 1.38 X 107> m? kg s72 K™!.

e Show that we may expect the temperature of the hot gas to be related to the observed
line-of-sight velocity dispersion as

2
T =72 10° (Ll) K (7.3.2)
1000 km s~

15



Formulae and constants

Distance modulus (D in pc):

m—M =5log,,D -5
Black-body radiation:

_ 203 1
I, = L |
2hc? 1
I/l =

A3 ehe/AT _ 1

Radius of the Sun: R, = 7 x 10® m

Mass of the Sun: M, = 2 x 10% kg

1 pc =3.09 x 10'® m

Planck’s constant: & = 6.626 x 107* m? kg s~!
Boltzmann’s constant: k = 1.38 X 1072 m? kg s2 K!

Gravitational constant: G = 6.673 x 107" m? kg~! s72
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Werkcollege, Cosmology 2016/2017, Week 12

These are the exercises and hand-in assignment for the 12th week of the course Cosmology.
Every week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 12.2 below.

12.1 Cosmological surface brightness dimming (Wed)

In astronomy, the luminosity L of a source is the energy output per unit time (e.g. measured in
W), the flux is the energy passing through a surface of unit area per unit time (e.g. in units of
W m~2) and the intensity I of radiation is the flux per unit solid angle (W m~2 sr™!). It is straight
forward to show that the intensity is distance-independent in standard Euclidian geometry, as
long as there is no absorbing material between the source and the observer.

e Using the definitions of angular diameter- and luminosity distance, show that the intensity
of a source decreases with redshift as

1(2) = Ip(1 +2)™ (12.1.1)

12.2 Cosmological distances
(adapted from Reexam 2013/2014) (Wed)

Recall that a line element in the Friedman-Robertson-Walker metric may be written as

2
t
ds? = —dr* + a—(z) |dr? + R sin’(r/R)(d6” + sin” 6 dg?) | (12.2.1)
c
for scale factor a, co-moving radial coordinate r, and radius of curvature R.
We have seen that it is useful to define the angular diameter distance, Dy, as

D
Dy = —— 12.2.2
e ( )
for distance measure
D = Rsin(r/R). (12.2.3)

With this definition, we then have following relation between the length d/ of a standard rod,
oriented perpendicular to the line-of-sight, the apparent angular size of the rod df, and Dy:

dl = D,dé (12.2.4)

which is similar to the usual Euclidian relation.
The general expression for the comoving radial coordinate, r, is

c

r= ft o (12.2.5)

for light emitted from a source at t = #; and received by an observer at t = #,. In general,
this expression must be integrated numerically, although analytic solutions are possible in some
cases. Here we explore one such case, the Einstein-de Sitter Universe.

17



In an Einstein-de Sitter Universe, Qy = 1 and Q, = 0. For this particular case, the cosmic
time ¢, the Hubble constant Hy,, and the scale factor a(¢) are related as:

3H0t)2/ ’

(12.2.6)

a(t) :( >

a. Show that, for an Einstein-de Sitter Universe, the comoving radial coordinate r and the
redshift z are related as

r= 1=+ (12.2.7)

Hint: The following integral may come in handy:
f(l +07Pdx=2(1-1+a)""?) (12.2.8)
0

b. Show that D, has an extremum at z = 5/4 in the Einstein-de Sitter Universe, and argue
that this must be a maximum. What does this imply for the apparent sizes of objects (of
a given linear size) as a function of redshift?

12.3 The Sunyaev-Zeldovich effect (Thu)

In the Sunyaev-Zeldovich effect, CMB photons are inverse Compton scattered to higher ener-
gies when passing through hot gas in galaxy clusters. The energy increment is

AE,JE, =y (12.3.1)

where y is the Compton optical depth. This is illustrated schematically in the figure below:

Wavelength (mm)
5 2 1 05
s00 T T T

- [\
o (=3
o o

Intensity (MJy sr™})

n
o

20 50 100 200 500
Frequency (GHz)

10

At low frequencies (hv < kT'), the CMB black-body spectrum can be approximated by the
Rayleigh-Jeans formula,
I~ 2v2kT

v 2

(12.3.2)

c

a. Convince yourself that an energy boost of the form (12.3.1) corresponds to a purely hori-
zontal shift of the CMB spectrum (when plotted as /,, i.e. specific intensity per frequency
interval).

b. Then show that in the Rayleigh-Jeans limit, the decrease in the observed intensity is

AL /L, = =2y (12.3.3)
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Formulae and constants

Distance modulus (D in pc):

m—M =5log,,D -5
Black-body radiation:

_ 203 1
I, = L |
2hc? 1
I/l =

A3 ehe/AT _ 1

Radius of the Sun: R, = 7 x 10® m

Mass of the Sun: M, = 2 x 10% kg

1 pc =3.09 x 10'® m

Planck’s constant: & = 6.626 x 107* m? kg s~!
Boltzmann’s constant: k = 1.38 X 1072 m? kg s2 K!

Gravitational constant: G = 6.673 x 107" m? kg~! s72
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Werkcollege, Cosmology 2016/2017, Week 13

These are the exercises and hand-in assignment for the 13th week of the course Cosmology.
The hand-in assignment for this week is Problem 13.5 below.

13.1 Gravitational microlensing (Wed)

In 1986, Bohdan Paczynski suggested that dark matter in the form of massive compact halo
objects (MACHOSs) would be detectable due to gravitational lensing of distant stars. Recall the
expression for the angular radius of the Einstein ring:

0

_ 4GM( Dis ) (13.1.1)

C2 DSDL

where M is the mass of the lensing object, Dy g is the distance from the lens to the source, and
Ds and Dy are the distances from the observer to the source and lens, respectively.

e A requirement for significant amplification of the source is that it is smaller than the
Einstein radius of the lens. Calculate the minimum detectable lensing mass, assuming
that the lensing objects are at a typical distance of 10 kpc and that the background stars
are solar-type stars in the Large Magellanic Cloud at a distance of 50 kpc.

e Show that, for a population of lenses with a uniform spatial distribution of (mass) density
p extending all the way to the source population, the optical depth is

()

e Show that, if the population of lenses forms a self-gravitating system extending all the
way to the source population, then the optical depth depends only on the velocity disper-
sion o of the system:

T~ 0%/

You will need to the following quantities:
1R, =7x108m

1 pc =3.08 x 10'® m

1 My =2x10kg

G =6.67x 107" m?kg! s72
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13.2 The flatness problem (Thu)

In this assignment we explore the evolution of the density parameter for matter, ,,, with red-
shift/scale factor. According to the CMB measurements by the Planck satellite, the current value
is Q0 = 0.31 while the dark energy density parameter is Q5 = 0.69, making the Universe
exactly flat with Q = 1.0.

e Recall that the critical density, at any epoch, is defined as
pe = 3H?/87G (13.2.1)

and the time derivative of the scale factor is given by the Friedman equation,

) ) 172
a=Hy|Quo(l/a=1)+Qro(a® - 1) +1] (13.2.2)

Now show that regardless of the present-day values of Qo and Q, o, the Universe ap-
proached an Einstein-de Sitter Universe with Q,, = 1 at high redshift.

o If the matter density is currently €,,0 = 0.3, then how much did it deviate from unity at
z = 10007

This is the flatness problem: Why is the current value of €, close to, but not exactly unity?
It requires an exceedingly accurate degree of fine-tuning to produce the tiny departure from
Q) = 1 at high redshifts that result in a present-day Universe whose density parameter is
neither very different from, nor exactly equal to unity.

From a practical perspective, however, it is very convenient that the Universe behaved as an
Einstein-de Sitter Universe until relatively recently (in cosmological terms). In terms of struc-
ture formation, the regime of linear grown occurred under conditions where the density was
very close to the critical value and the Q, term negligible. At later epochs this is no longer the
case, but since the non-linear regime has to be treated numerically in any case the departures
from the Einstein-de Sitter Universe do not represent a very serious extra complication.

13.3 Parametric solutions to Friedman’s equation (Thu)

Show that the parametric solutions

W) = — B os) (13.3.1)
2(Quo—1)
Qo i
(o) = 0 — sin6) (13.3.2)

2H)(Qyr0 — 1)3/?
satisfy the Friedman equation (13.3.2) for Q5o = 0 and Q) > 1.

13.4 Tophat model (Thu)

In the “tophat” model for the evolution of overdensities we consider each overdensity as a
“mini-Universe” with density €, > 1 that evolves in a “background Universe” with Qg = 1.
Hence, the scale factor of the background Universe evolves as

2/3
0= (BHOI) (13.4.1)

2

while the overdensities evolve according to the parametric solutions in Problem 13.3.
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e Show that the density contrast of an overdensity, once it has reached virial equilibrium, is

Pvir/po = 150 (13.4.2)

13.5 The Press-Schechter mass function (hand-in)

In the lecture we saw how a few basic assumptions lead to a simple analytical formula that pro-
vides a remarkably good description of the mass function of bound structures in the Universe:

1. The Universe “initially” (i.e. shortly after the epoch of reionization) consists of particles
that are distributed randomly. The variance on the mass within a given volume V is, in
this case,

I =0’V (13.5.1)

where o2 is the variance per unit volume.

2. The distribution of overdensities P(A, V) is Gaussian with variance given by (13.5.1)

3. The fluctuations are initially small and grow linearly until they reach a critical value, X,
at which point they immediately collapse and virialize.

These assumptions lead to a mass function for bound fluctuations of the form

dN -3/2 *
i o« M~ exp(-M/M™) (13.5.2)

where M* o a? for scale factor a.
A more general result may be obtained by relaxing the assumption (13.5.1).

e Suppose that the variance follows a relation of the form
3L = otV (13.5.3)

Then, following the same reasoning that led to (13.5.2) (see the lecture viewgraphs), show
that the more general mass function has the form

dN w M 2(1-a)
M exp(— [W] (13.5.4)
with
M* « g'/t® (13.5.5)
The relation ( )
d 2ab exp (—a?&?0) &1
—erfc (aé’) = - (13.5.6)
s o) ==

might be useful.
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Werkcollege, Cosmology 2016/2017, Week 14

These are the exercises and hand-in assignment for the 14th week of the course Cosmology.
The hand-in assignment for this week is Problem 14.4 below.

14.1 Decaying potentials

We have seen in earlier lectures that small density perturbations in a Universe dominated by
pressure-less dark matter grow linearly with the scale factor, i.e.,

S
P xa (14.1.1)

0

Here we examine the evolution of perturbations of the underlying potential, ¥. Let us assume
for simplicity that the perturbations are spherically symmetric.

e Suppose that a test particle is located at the outer “boundary” of a perturbation with co-
moving radius r. Use the classical definition of the gravitational potential to show that, in
the linear regime, the perturbation of the potential 0¥ remains constant as the scale factor
increases.

e Also show that, if the perturbations grow more slowly than a, the perturbation of the
potential will decay as the scale factor increases.

14.2 Newtonian equivalence of metric perturbations

(From Dodelson, Exercise 3, Chapter 4)
The metric for a particle travelling in the presence of a gravitational field is g, = 1, + hy,
where hoy = —2¢ where ¢ is the Newtonian gravitational potential; 4,y = 0 and h;; = —2¢0;;:

~1-2¢ 0O 0 0
~ 0 1-2¢ 0 0
v = 0 0 1-26 0 (14.2.1)
0 0 0 1-2¢

e Show that Iy = 6”0¢/dx/

e Show that the space components of the geodesic equation lead to d*x'/df* = —§"d¢/dx’/
in agreement with Newtonian theory. Use the fact that the particle is non-relativistic so
P> Pl
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14.3 Four-momentum of photons in perturbed FRW metric

We adopt the perturbed version of the FRW metric as follows:

C1 = 2W(x. 1) 0 0 0
B 0 2[1 +20(x.1)] 0 0
8y = 0 0 2[1 +20(x, 1)] 0 (14.3.1)
0 0 0 2[1 + 20(x. 1)]

In the lecture we found that, to first order, the Oth component of the energy-momentum four-

vector can be written as
P’ ~ p(1 - ) (14.3.2)

where o

e Now show that the other components of the momentum four-vector can be written as

P~ pp' (14.3.4)

where p is the unit vector parallel to p.
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14.4 The momentum time derivative

We have expanded the left-hand side of the Boltzmann equation in terms of the partial deriva-
tives with respect to ¢, x and p as

df _of  of dx Ofdp Of dif

= - + -
de ot o0x dt opdt 9p dt

(14.4.1)

Using the definitions of p and p, and keeping only first-order terms, we saw how this reduces to

df _of P 9r ordp

= -+ 14.4.2
de o0t a 0x OJpdt ( )

The momentum term is non-trivial and requires a bit more work. So let’s get started! First, we
use the Oth component of the geodesic equation:

dx® dx® dx?

— =%, —— 14.4.3

da? PdA da ( )
e Show that, in first instance, Eq. (14.4.3) can be written as

d P*PF
~p(1 -] = -1,

1+Yv) (14.4.4)
(i.e., Eq. 4.23 in Dodelson’s book). Hint: as usual, keep only first order terms (linear in
¥)!

o Next, expand out the time derivative on the left-hand side and show that this leads to

d d¥ P*PB
LA-¥) = p— T
dr dr P

(1+%9) (14.4.5)

(i.e. Eq. 4.24 in the book)

e Now, multiply by (1 + V) to find Eq. (4.25):

d OV PO peps
=L p( P )— 5 ——(1 + 2¥) (14.4.6)

= _— + ——
dr ot adx! )4
o Finally, evaluate the Christoffel symbol and show that

d—p:—p(H+

o0  p oY
14.4.7
= ) (14.4.7)

_—+ ——
ot adx
Hint: See p. 91-92 in Dodelson’s book.

We have now finished manipulating the left-hand side of the Boltzmann equation for photons:

df _af P of a_]f(H+ac1> g‘a\y)

o axi o " dox

it o a ax Pap (14.4.8)
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14.5 First order terms of the Boltzmann equation for photons

e Demonstrate that the first-order terms in the left-hand side of the Boltzmann equation for
photons (Equation (4.40) in Dodelson’s book),

dff 0 af(0)® p oo (af®
drl, P op a ox'\ Op
a ( of® afOlod povY
Hp®— - —+——| (145.1
* p(?p(pap p&p 8t+a6xl ( )
follow from expression (14.4.8), combined with the perturbed expansion of the photon
distribution,
ofV
f=r9- p——0 (14.5.2)
p

e The next equation in the book, (4.41), says that the first of these terms can be written as

9 (9f© f0 80 _dT 1O
_pZ _ = _ 0t 1455,
pat( ap © P o PO arap (14.5.3)
of0 o0 _dT/dr & ( Hf©
S P pet Y 14.5.4
P=op ot TP T ap\Pap (14.54

Show that the second term in Eq. (14.5.4) does indeed cancel the third term in Eq. (14.5.1)
so that the first-order terms of the left-hand side of the Boltzmann equation for photons

become df of9 100 poe oD x4
P P
el I I i 14.5.5
dr |y pap [0t+a8x’+6‘t+aé?x’] ( )
14.6 Exercise 5, Chapter 4
Suppose we started chapter 4 by writing
df
L = 14.6.1
i1 ( )

Change from this form to the one in Eq. (4.1) (with df/dt on the left). How is the collision
term here, C’ related to C in Eq. (4.1)? Argue that the first-order perturbations in the factor re-
lating the two collision terms can be dropped since the collision terms themselves are first-order.
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14.7 The Einstein tensor in the perturbed FRW metric

To calculate the perturbations of the metric, ¥ and ®, given the inhomogeneities in the distri-
bution of matter and radiation, we need Einstein’s field equations:

Gy = 8nGT,, (14.7.1)
with the Einstein tensor given by
|
Gyv = Ryv - Eg,uvR (1472)
Specifically, we choose the (0, 0) component, with
0 0i R
G0 =g"Gip = (-1 +2%¥)Rq — 0} (14.7.3)
for Ricci tensor
R =10 = T + T TP =TI (14.7.4)

and Ricci scalar R = g"R,,.
To calculate R, we need all elements of R, and thus the complete set of Christoffel symbols.
Here, we calculate a few of them.

e Show the following relations (as usual, to first order in the perturbations of the metric):

My = Py (14.7.5)
% =~ k¥ (14.7.6)
% =~ 6;a°[H+2H® )+ ] (14.7.7)

where the tilde denotes the transformation to Fourier space.
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Werkcollege, Cosmology 2017/2016, Week 15

These are the exercises for the 15th week of the course Cosmology. The hand-in assignment for
this week is Problem 15.3 below.

15.1 Momenta of the photon perturbations
Show that

b 2 4
dup*O(u) = §@0 - §®2 (15.1.1)
-1

15.2 From inhomogeneities to anisotropies (I)

In this exercise we fill in some of the details in the calculation of anisotropies in the observed
temperature distribution on the sky from the inhomogeneities around recombination.
We start, once again, from the Boltzmann equation for photons:

O + iku® = —& — iky¥ — 7[@) — O + uvy] (15.2.1)

We are now, of course, interested in the high-order moments ®; that correspond to the (small)
variations in the CMB temperature observed today, from our viewpoint at n = 9. We start by
subtracting 7® from both sides:

O + iku® — 10
O + (ikyu — 7)O

~® — iky'¥ — 7 [@) — © + uv,] — 10 (15.2.2)
& — ik - 7[Og + uv,] (15.2.3)

e Verify that the left-hand side can be rewritten as

e—ik/ﬂ]+‘ri [@eikﬂﬂ—‘r] — @ + (lk,u — T)@ (1524)
dn

We define the right-hand side as the source function (borrowing terminology from the theory of
radiative transfer in stellar atmospheres, which shares many aspects with this calculation),

S = — — iku¥ — +[Og + uvy] (15.2.5)

e Then show that the perturbations at conformal time 7, are related to those at 7;,;; as

. . . TIO ~ .
Oy = @)(ninit)elklﬂlinit—Te—lklln0+T + e—lkllﬂ0+Tf dnS ekun=1 (15.2.6)

Minit

and, if o is today and 7;,;; is long before recombination

770 )
CIDE f dnS e *Hr=m)=m (15.2.7)

Minit
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15.3 From inhomogeneities to anisotropies (II)

We now need to calculate the multipole moments, defined as

1

1 le
m Il 77)1(#)@(#7 1m0)

)

with ®(u, 179) given by
O, no) = f " dng e'kuG=n0)=7()
0

If § did not depend on y, this would be easy since
1

d (- I,
Tﬂpz(ﬂwkﬂ ) = m]z[k(ﬂ —10)]

-1

where j; is the spherical Bessel function of order . So let us split S into two parts,

(%))

= —d) - T@()
—u(ik¥Y + 1vp)

1

(%1}

2

where S, depends on i and S, does not.

e Evaluate the part of ®; involving S (call it ®,) and show that
e )
Oy = (-1) f dne™™ (= — 16y jilk(n - 170)]
0

Next, we make use of the fact that §, appears multiplied by e,
e Demonstrate that 4, when appearing in this context, can be replaced by

1d

#_)Ed_ﬂ

e Show that the integral involving S, evaluates to

g U ..
f ’ d77§2 e m=n0)-7( — Const — f ’ dn eiky(’?—ﬂo)i Pl (—‘I’ + Vs )
0 0 d?] k

(15.3.1)

(15.3.2)

(15.3.3)

(15.3.4)
(15.3.5)

(15.3.6)

(15.3.7)

(15.3.8)

where Const is independent of i (so irrelevant when computing the ®;). Use that 7(0) > 1
so that e™® ~ (. In case you forgot, here is the formula for integrating by parts:

f u(x)v' (x)dx = u(x)v(x) — f v(x)u'(x)dx
e Then show that the contribution of S, to the multipole moments is

O = (-1 fo " dnd% e (v - %)] jilk(n = 70)]
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e Finally, introducing the visibility function g(n) = —te™", verify that the following two
forms of the source function S are equivalent:

e T(—D — 1@y + di [e*(") (‘I’ - @)] (153.11)
n

S (k,m) k

d (i . .
801Gy +¥] + 1 (’Vbi(")) + e [Pk - blkom)|  (153.12)

The latter form shows more clearly that the observed CMB anisotropies contain terms
of three types: 1) The monopole of the temperature perturbations combined with met-
ric perturbations around the recombination, 2) The bulk velocity (which is coupled to
the temperature dipole), also around recombination, 3) Temporal variations in the metric
perturbations (i.e., the potential) along the entire line-of-sight.
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Solutions, Cosmology 2016/2017, Week 4

41 F,and F,

If we look at a small part of the spectrum dA, then the flux is

Similarly,

SO

Using

we have

SO

dF = F,da (4.1.13)
dF = F,dv (4.1.14)
F,dA = F,dv 4.1.15)
F dAa
v _ 4.1.16
F,{ dv ( )
A=c/v “4.1.17)
da c
== 4.1.18
dv V2 ( )
F, A2
c_4 (4.1.19)

F, v ¢

as desired (F, and F;, must both be positive, of course).

4.2 Flux of astronomical objects

1. For A = 5500 A = 5500 x 107" m and 7' = 9900 K we get I, = 1.81 x 10 Wm™=2 m™!

ST

-1

2. Multiply I; by Aly =900 x 107 m = Iy, = 1.63 x 10" W m~2 sr™!

3. There are (at least) two ways to do this:

a. V-band luminosity of Sirius: Ly = 4aR*(xly) = 9.55 x 10*® W (factor 7l comes

from integrating Iy over angles from 0 to 7/2 with respect to the normal: Py =
foﬂ/z 2nsin@cos 0lyd6 = nly). Then the flux measured at Earth = Fy = % =
1.18 x 1078 W m2.

Since intensity is distance independent, we can also obtain Fy by integrating over
the disk of Sirius as seen from Earth: Fy = IyQ, where Q = m(R/D)> (we have
assumed that Iy is constant across the surface, as it will be for a pure black-body).
This again yields Fy = 1.18 x 1078 W m~2,

4. Number of photons per square meter: Ny = Fy/Ey, where Ey is the energy of a V-band
photon = hvy = hc/Ady. We get Ny = 3.27 x 10!° m=2 s=!. Number of photons entering
HST aperture: multiply by (1.2m)? = 1.48 x 10! s7L.
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4.3 Flux, Magnitude and Surface Brightness

1. Since Vega has my = 0, we have

1J
my(1Jy) = =2.5log;y —> = 8.9 (4.3.20)
FVega
2. From the definition of magnitudes,
my —my = =2.51og,,(F/F>) (4.3.21)
we have
Fy/F, = 1070 m=m) (4.3.22)
so again, using Vega as reference, we have
F(m = 6) = Fyega x 107°%° =143 x 100" Wm > Hz! ~ 14Jy (4.3.23)

3. The flux received from a 6th magnitude star, relative to one square arcsecond of sky
background, is
Fomag/ Frg = 107070722 =25 % 10° (4.3.24)

We thus need an area of 2.51x10° arcsec? = 698 arcmin® (R = 15 arcmin, similar to full
Moon or Sun)
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Solutions, Cosmology 2015/2016, Week 5

5.1 Distance and distance modulus

Can be shown in a couple of ways.
1) The distance modulus is
m—M =5logD/10pc

So for distances D; and D,, the distance moduli are
(m—M); =5log D;/10pc

and the difference is
(m - M)] - (l’l’l - M)2 = SIOng/DQ

soif (m — M); — (m — M), = 0.1, then the ratio D,/D, ~ 1.05, so a 5% error on the distance.

2) We can also use standard error propagation:

d(5log D/10pc) sD

oD
5 oD

In10 D

o(m— M)

Hence, 6D/D = 6(m — M)1In10 ~ 0.55(m — M)

5.2 Moving cluster method

e,
"
e,
.
.....
LT
.....
e,

A

1. Distance from moving cluster method: D = ”ﬂﬂ} Insert v, = 40 km s~ and u = 0.110”

yr~! yields D = 44.4 pc.

2. See above - min dist Dy,;, = sin30°D = 0.5D = 22.2 pc.

3. Closest passage: Distance travelled = D, = Dcosf. Time T. = D./v = Dcos8/v. Space
velocity v = v,/sinf = Du/sinf. Then T. = (Dcos8)/(Du/sinf) = cosfsinf/u =

8.1x10° years ago.

4. Fading by 1 magnitude — distance increase by factor v2.512 = 1.585 to D’ = 70.4

pc. AX = D’'cos® — Dcosf. AT’ = AX/v = (D’'cos® — Dcos8)/(Du/ sin6)
(1.585D cos @ — Dcos6)/(Du/ sinf) = sin6(1.585cos @ — cosf)/u. We have sin &
Diin/D’ = 0.5D/1.585D = 0.315, i.e. AT’ = 6.0 x 10° years.
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5.3 Cepheids

1. From the parallax, the distance to 6 Cep = 1/3.8 X 10-3 = 263 pc
This gives an absolute magnitude My = 3.8 — (5log,,d —5) = -3.3
Using 6 Cep to set the absolute zero-point of the period-luminosity relation, we find
-33=-25%x0.73+2Zy,ie.,Zy = -147,ie. -3.3 = -2.5log,, P — 1.47.
Compare this with the zero-point for the LMC P-L relation to find the distance modulus
m—M =17.0—-(-1.47) = 18.47. This gives the distance, D = 49 kpc.

2. The extinction corrected magnitude is Vy = 27.1 — 0.1 = 27.0.
From the P-L relation, we get My = —=2.5log,, P —1.47 = -3.97
Distance modulus (m — M)y = 27.0 — (-3.97) = 31.0so D = 15.8 Mpc

5.4 Baade-Wesselink method
V,
V los

7

) |

In the sketch above, V, is the expansion velocity of the stellar surface while V, is the component
of that velocity directed towards the observer, Vi,s = V,.cosf. The observer will see a “ring”
with surface area da = 27 sin 6 cos 8df and intensity /(6) expanding at Vi,s(6). The mean line-
of-sight velocity integrated over all 6 and weighted by /(6) is then

/

7,
7’
7’
A

[10)Vi® da [ 16)V, cos 6 2xsin 6 cos 6d6

<‘/10S> = - 7'{/2
fl(@) da fo 1(6)27 sin 6 cos 6 d6
7'!'/2 2 .
|y T 1©)cos* 0sing o
' foﬂ/z 1(6)sinfcos6db
For constant 1(6),
foﬂ/z cos” 0sin 6 d6
<‘/IOS>/VI‘ = 7T/2
fo sin 6 cos 6 df
Now substitute U(x) = cos x and U’(x) = — sin x so that

/2 /2 Un/2) 0 1
f cos’0sinfdo = —f UXO)U’(0) do = —f xzdx:f dx ==
0 0 U(0) I 3

Similarly,

/2 1
f sinfcosfdf = -
0 2
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SO 3
<Vlos>/vr = E

For 1(6) = 1(0)(0.4 + 0.6 cos 6):

Vi)V, f()ﬂ/2(0-4 + 0.6 cos 6) cos” 0sin 6 d6
los r =

foﬂ/z(OA + 0.6 cos 6) cos 6 sin 6 dO

Making substitutions similar to those above, we get

24

<Vlos>/Vr = ﬁ

5.5 K-corrections
1. K-correction in wavelength units :

[ f()S (vda

K=251
o810 [ FLA/(1 + 218 ()dA

+2.5logo(1 +2)

This comes from

L2 s (da

A /(1+2)
LM pns (1 + 2)1da

K =25log,,
and
A'=2/(1+72)
dAr' =da/(1 +2)
that is
[ F)S ()da

0~

L2 FTA/Q + 1S () +2)71da

L2 s (yda

fff FIA/(1 + 218 (Dda

K = 25]log,

= 2.5log, +2.5log,,(1 +2)

2. In frequency units:

2 Fo)S (v
L2 fons v /(1 + 2)ldv

Here, we have
vV =v(l +2)

dv' =dv(l +2)
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so that

L2 Fo)S (rydv
K = 25logy———
L2 Fons b/ + 2)1dv
L2 fo)S (rydv

= 2.510g10 v (1+Z)dV

L7 £t + 218 (rydv
-~ —-251o +

e L7 fIv(1 + 218 mdv ’ Bioll T2

3. For S(A) o A# and assuming the filter transmission curve is a box function, we get

[ da
K = 25log;y——— +2.5log,,(1 +2)
[T/ +2)dA
B+ D (47 -7

— _ 148 1+
B+ D71+ 27 (4,7 - 47)
2.51og,y(1 + 2 +2.510g,,(1 +2)
2.5log,o(1 + z)P*!
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Solutions, Cosmology 2016/2017, Week 6

6.1

Mass distribution in the Milky Way

a. Circular motion:

6.2

|GM
Ve = 4| —
R

V2R
G

SO
M =

The mass within R is also "
M = 47rf rzp(r)dr
0

Differentiating, we find

dM V2
— =47R’p(R) = =
R P(R) G
since v, = const and hence
V2
p(R) = =R~

4AnG

(6.1.1)

(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

We just need to fill in the numbers: v, = 200 x 10°> m/s, Ry = 8 kpc = 2.46 x 10°° m. Then

0 =7.9x 1072 kg/m> = 0.012 M, pc™>

At z = 0, we have p; = 0.08 M, pc>. To find the height where p; = py:

0.012 = 0.08¢ /%«

i.e.

7 = =741 1n(0.012/0.08) = 580 pc

Two-body relaxation

. The potential energy during the encounter is

(6.1.6)

(6.1.7)

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

G 2
Ur) = -2
while the kinetic energy is
1
T = 5mv2
Equating the two,
Gm?> 1
= = ZmVv?
r 2m
>0 2G
m
B=—
Vi
We find 8 = 2.65% 10'2 m. For stellar density n and velocities V, the number of encounters

within a radius 8 in time ¢ is
Rene = mrﬁ2 Vit
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Inserting 8 from above,

2G6m\*
Rene = I’lﬂ( V;n) Vit (6.2.6)
= nrdG*m*V73t (6.2.7)
or 5
1%
fone = ———— 6.2.8
AnG2nm? ( )

For V = 10 km/s, n = 0.1 pc and m = 1M, we find ., = 1.3 x 10?!s or 4.1 x 10'3 years.
So ~ 1000x the age of the Sun.

. The acceleration depends on where exactly the particle is with respect to the deflecting
mass. If [ = vyt is the distance from the closest encounter, then the total acceleration of
the particle is

Gm Gm
= = — 6.2.9
2 BE+ P ( )
The component of this perpendicular to v is
G
a, = d°= — A (6.2.10)
rooB e gy V2
Gmp
= — (6.2.11)
2
(B2 + v”t2)3/2
The total velocity change is found by integrating over all /, i.e.
v, = [oo aJ_dt = j:oo Wdf (6212)
G
= 222 (6.2.13)
viB

The integral (6.2.12) above may evaluated using Bronshtein et al. (2004), Handbook of
Mathematics, integral #242, p. 1032:

f dx  2(2ax+Db)
XVX  AVX

where X = ax®> + bx + ¢ and A = 4ac — b*. In our case, a = vﬁ, b =0and c = 5% Then

(6.2.14)

dr 2 2.1
f(ﬁ2+vﬁt2)3/2 - 4vﬁ 2\/@ (6.2.15)
For limits —oco and +o00, we get
[ v = ol 62.16)
= ,BZLV” (6.2.17)

Multiplying by Gmf, we then have

0 « Gmp 2Gm
= dr = dr = 6.2.18
Vi Ioo a, IOO (ﬁz + Vﬁt2)3/2 ﬁV” ( )
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d. This follows straight forwardly by integrating over all 8

dv? = f (v, )*d* N (6.2.19)
.Bmin
- f (26—’")2 2BV dBde (6.2.20)
ﬂmin IBV o
2.2
nGimn | (B 4 (6.2.21)
V ﬁmin

e. Assume that the density n and relative velocities V are constant over time, we have
Irelax 87TG2m2n
f (dV*dt = ———1In Atyeiax = V? (6.2.22)
0 \%
i.e.

V3

lelax = ————— 6.2.23
T 8 rG2m2n In A ( )
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Solutions, Cosmology 2016/2017, Week 7

7.1 Rotation of “‘Spiral Nebulae”
1. Rotation period = 2 5 x 60/(0.022"yr™!) ~ 86000 yr
2. Speed = 27x 15 kpe / 86000 yr ~ 1.1 pe/yr = 1.07 x 10° m/s = 3.6 ¢ |

3. Proper motion on the sky = 0.022” yr~!. Absolute velocity = 100 km/s = 1.0 x 10~ pc
-1
yro.
Distance where 0.022" corresponds to 10~ pc: 10~ pc / D = tan 0.022” i.e. D ~ 960 pc.
Well within Shapley’s Galaxy.

4. Plate scale = 30” mm™". Shift = 15 x 0.022” = 0.33"” ~ 0.01 mm

7.2 Radial velocities and radiation pressure
As per assumption (1), masses are

rov: r,DV?
M=2L_-"2“ 7.2.24
G G ( )

where r, is the physical radius, r, is the angular radius, D the distance and v the rotational
velocity.

According to assumption (4), the radiation pressure is distance-independent. The momen-
tum of a photon is

p=E/c (7.2.25)
for photon energy E. Hence, the radiation pressure from a star of magnitude 1 is
L, 1
= 7.2.26
P 47(1AU)? 1.2 x 10! ¢ ( )
and the radiation pressure from one square degree
Lo 1
= 0.035 7.2.27
P X Ax(IAUZ 12 % 101¢ (7.2.27)
L
= 292x 107 ———— 7.2.28
4rc(1AU)? ( )

There are 27(180/7)* = 20626 square degrees in a hemisphere. If all the light came from one
point, along a line-of-sight perpendicular to the plane of a nebula, the pressure would then be

Lo

P=60x10"°"—-— 7.2.29
4rc(1AU)? ( )
Since it is distributed over a hemisphere, the actual pressure is half that,
L
P=30x10"——1— 7.2.30
4rc(1AU)? ( )
Hence, the force on the nebula is
F = PxnR, (7.2.31)
= 3.0x107 DRyl (7.2.32)
-7 4¢c(1AU)? -
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where R, and R, are the “outer” physical and angular radii. Hence, the acceleration is

A=F/M = 3.0x107 DRiLo _G (7.2.33)
B - 4c(1AU)? r,Dv? -
L.G DR?

= 75%x10710= a (7.2.34)

c(1AU)? r, 12

e For D =44x10?m,r = 150" = 7.27 x 10* rad, R = 210” = 1.02 x 1073 rad, we get
A =1.04%x10"" m/s°.

e Time to accelerate to 1000 km/s = 3 x 10'3 years.

! !
1
D:fv(r)dT:fATdrz—Aﬂ
0 0 2

Inserting = 9.62 x 102 s and A = 1.04 x 107" m/s?, we find D = 4.8 X 10* m =
1.6 x 10! pc. Leads to many evident inconsistencies.

e Distance travelled:

The most obvious effect that has been ignored is, of course, gravity from the Milky Way.
This would counteract the acceleration from radiation pressure, although the exact gravitation
of the Milky Way was difficult to estimate in 1921 as the mass of the Milky Way was very
poorly constrained.

Also, it is clearly not realistic to assume that the Milky Way occupies half the sky, as seen
from a distant galaxy. This would further reduce the radiation pressure.

7.3 Hot gas in galaxy clusters

Velocity of particles in gas with temperature 7':

Vims = A |—— (7.3.1)

i.e.

Vi Tp
3k k
Vims 1S the 3-D velocity dispersion, i.e. Vins = 30p and u is the mean molecular weight.
Inserting 4 = 107" kg and v, = 10% m s7! yields 7 = 72 x 10° K and it is clear from the above

that T scales with o2, i.e.

T = (7.3.2)

2
T =72% 10° (&1) K (7.33)
1000 km s~
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Solutions, Cosmology 2016/2017, Week 12

12.1 Cosmological surface brightness dimming

The flux is
F(z) = L _ L (12.1.1)
9 4D? T 4D (1 + 2 o
for distance measure D, redshift z and luminosity L. The angular size is
1 +1
0(2) o = o (ZD ) (12.1.2)
A
and the solid angle is then
1 2
Q@) o | ;f) (12.13)
We thus find the intensity scaling as
F(2) L D? 1
I(z) = 12.1.4
@ Q(2) > 4nD%*(1 + z)2 (1 + 2)? * (1+2)* ( )
12.2 Cosmological distances
a. In general, we have
1]
r= f %dt (12.2.1)
to
and for Einstein-de Sitter: 23
3Hot
a(t) = ( 20 ) (12.2.2)
Converting to an integral over redshift:
aity=(1+z2" (12.2.3)
1.e.
z=1/a(t) -1 (12.2.4)
0 d dzd 1
Z Z da .
T —a(t)za(t) (12.2.5)
Let’s try to express & in terms of z:
2 (3Hy\*"”
a=3 (TO) '3 (12.2.6)
4 (3H\""’
P = §( 20) 23 (12.2.7)
We have 23
3H,
a(r) = ( 20) 3 (12.2.8)



SO

i.e.

2/3
-2/3 — (@) (l,)—l
2
_ A (3T 3H) T
- 9\ 72 2 ) ¢
4 (3H, 4/3 2/3
- 5%y (3 a+o
4 (3H,\
- 5[ aso
= H(1+72)

So now we can integrate over z:

This has extremum for

1.e.

S e oa(t)? f 10
| —ldr=—c | =4
fo any a) < Sy an’™”

Z (1 +Z)—1
o Hol+2)2 ~

D/(1+z)=r/(1+72)
c -
250(1 —(1+27") /(1 +72)

C _ —
T 1+ =1 +277?)

dDy

4 _0
dz
d d
vy -1 = —(1 -3/2
dz( t2) dz( *2)
_(1 +Z)_2 — _%(1 +Z)_5/2
2
3 = @ + )12
9
1 = (1+2)
9 5
_— 1 = - =
4 4 °

(12.2.9)

(12.2.10)

(12.2.11)

(12.2.12)

(12.2.13)

(12.2.14)

(12.2.15)

(12.2.16)

(12.2.17)

(12.2.18)

(12.2.19)
(12.2.20)

(12.2.21)

(12.2.22)

(12.2.23)
(12.2.24)
(12.2.25)
(12.2.26)

(12.2.27)
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12.3 Sunyaev-Zeldovich effect

Rayleigh-Jeans approximation:

- 2v°kT

v

> (12.3.1)

The energy of each photon increases by AE,/E, =y, equivalently Av/v = y. We first convince
ourselves that a constant fractional increase in the frequency of each photon simply shifts the
spectral energy distribution horizontally:

Consider n photons per unit time in the frequency interval dv, at frequency v,. The scattering
process does not change the number of photons. Before shifting, the photons carry an energy
per unit frequency interval of

OE/ov = OEy/6vy = nhvy /vy (12.3.2)
After shifting by factor (1 + y), the interval is mapped onto
oV = (1 +y)dv (12.3.3)

at frequency v' = (1 + y)vy, and the energy is 0E’ = nhv’. The energy per unit frequency is now

OE' |6V = OE'/6V (12.3.4)
= nhv'/§V (12.3.5)
nh(1 + y)vy
= — 77" 12.3.6
(1 +y)ovy ( )
= O0Ey/ovy (12.3.7)

Hence, the energy per unit frequency (per unit time, i.e. the specific intensity, /,) remains un-
changed for a fixed point on the spectral energy distribution - the curve simply shifts horizon-
tally in frequency space.

Now, for brevity define @ = 2kT/c*:

I, =V (12.3.8)

The slope of the curve is
dl,/dv = 2av (12.3.9)

If the curve is shifted by Av, the change in intensity at fixed v is then (see sketch below)
Al, = —(dl,/dv)Av = =2avAv (12.3.10)
Dividing through by /,:

AL /I, = =2avAv/(av?) = =2Av]v = -2y (12.3.11)
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Solutions, Cosmology 2016/2017, Week 13

13.1 Gravitational microlensing

e We require

Or > Oy (13.1.1)
where 0. is the radius of the source.
AGM; [ Dis )

> RSI’C D 13.1.2
> (DSDL) (Rye/Ds) (13.1.2)

R2 C2 DL
M; > ——|—— 13.1.3
ETe (DLSDS) ( )

For Ry. = Ry, = 7x 108 m, Dy = 10 kpc, Dis = 40 kpc, Ds = 50 kpc we get M; =
2.65 x 102 kg = 1.3 x 107 M,, (see also Paczynski 1986).

e For a shell of density p and thickness dr, the mass surface density is
doy = pdr (13.1.4)
and the surface density of lenses (per unit area) is

doy = Midr (13.1.5)

L

For shell radius r, the surface density of lenses per unit solid angle is

dx; = rAdo; (13.1.6)
The optical depth is
dr = ndZ, 67 (13.1.7)
where G
ML DS - r
62 = 13.1.8
E c? ( Dgr ) ( )

The total optical depth for a system of radius R is then
fR AGM; (Ds —r\ nr’p
T = dr
0 C2 DS r ML
4nGp f R(Dg—r
= rdr
2 Jo \ Ds

4nGp ("
- = pf(r—rZ/Ds)dr
0

o2
_ 4nGp RP R
2 \2 3D
For Dg = R, we then have
21\ (Gp\
r= (?)(7)DS (13.1.9)

(Paczynski 1996, Eq. 20)
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e For a uniform sphere of radius Dy, we have from the virial theorem that

2
D
M=5128 (13.1.10)
that is )
4 (o DS
gnng =5 e (13.1.11)
or )
15 o
§=——— 13.1.12
ST 4 1pG ( )
Using the expression for the optical depth, 7, derived before:
2n (Gp) 15 o2
T ===
3 )\ 2] 4 npG
(5 o?
- 2/\ e
(Paczynski 1996, Eq. 22)
13.2 The flatness problem
The critical density is defined at any epoch as
pe = 3H?/87G = 3(a/a)*/87G (13.2.1)
so the density parameter €2, is
8nGpy
Qy = e = 13.2.2
w=pulpe = 3000 (13.2.2)
We have 12
a=Hy|Qo(l/a—1)+Qu@-1)+1] (13.2.3)
and
v = poa> = BQH}/87G)a™> (13.2.4)
SO
8nG(3QH?/87G)a™?
Qu = — By 876 (13.2.5)
3H; [Qo(1/a—1) + Qp(a* = 1) + 1] /a?
Qoa_l
= 13.2.6
[Qo(1/a— 1)+ Qpr(a®> = 1) + 1] ( )
Q
= 13.2.7
Qo1 —a)+Qx(a@® —a)+a ( )
(13.2.8)
We then see that for small a this reduces to
lir%QM =1 (13.2.9)
or, equivalently,
limQy =1 (13.2.10)
7—00

At redshift z = 1000 we have @ = 103 so that 1 — Qy, ~ 3 x 107°.
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13.3 Parametric solutions to Friedman’s equation

In an earlier lecture we found that the Friedman equation can be written as

. 2 1/2
a=H, [Qo(l/a— D+OQp@ 1)+ 1] (13.3.1)

By assumption, we here have Q5 = 0 so
a=Hy[Qo(1/a—1) + 112 (13.3.2)

We have to show that the parametric solutions indeed satisfy this relation. They are:

Q
a) = 2(9—01)(1 — cos 6) (13.3.3)
0 —
Qo .
[(9) = m(Q—SIHQ) (1334)
Hence, we have
d da 1 0 sin6de (13.3.5)
a = A Il ra—— oI
a6 2(Qo-1)
dr Qo
dt = —do= 1- 0) do 13.3.6
109 = 20, — 1y L T eos)) ( )
We then find o
s—=2—sin 6 ind
a=—p = Hy@ - 1) = — - (13.3.7)
W(l — COS 9) — COs

Squaring Eq. (13.3.2), inserting Eq. (13.3.7) on the left-hand side and Eq. (13.3.3) on the right-
hand side, we find that the solution should satisfy

)
sin” 6 2
= -1 13.3.8
(1-cosh)? (1-cosb) ( )
If we multiply by (1 — cos 6)?, we find
sinf = 2(1 —cos6) — (1 — cos §)> (13.3.9)
= 2-2cosf—1-cos’f+2cosh (13.3.10)
= 1-cos’6 (13.3.11)

which is, of course a valid trigonometric identity. Hence, the solutions (13.3.3) and (13.3.4) do
indeed satisfy (13.3.2).

13.4 Tophat model

Virial equilibrium is reached once the density contrast has re-collapsed back to half its max-
imum size, dy; = %amax. This means that cosé = 0 in Eq. (13.3.3), corresponding to 6 =

n/2,3m/2,.... The relevant solution here is 6,; = 37/2. At this point the background scale
factor is 23
3H, Lyir
a= (%) (13.4.1)
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while

1 Q
vir = % 13.4.2
Tir = 50, — 1 ( )
The density contrast is then
A = (alay)’ (13.4.3)
3Hotye\ (1 Qo |7
= - 13.4.4
( 2 ) (2 Q) - 1) ( )
. 2
_ 3H02HO(§W(9VH — sin B,;;) 1 Q -3 (13.4.5)
B 2 20,-1 o
9
= 5Qo(evir — sinfy;,)* ~ 150 (13.4.6)
(13.4.7)

since Qg = 1.

13.5 The Press-Schechter mass function

The derivation closely follows that given in the lecture slides for the case X* = ¢?V. This in
turns follows the original paper by Press & Schechter (1974; PS74), which may be consulted
for more in-depth discussion. Here we suppose that

2 = gtV (13.5.1)

The relative fluctuations per volume are then

V)|V = VV2g2 |V = gVo! (13.5.2)
or, per mass (for mean density p, so that M(V) = pV):
\/VZ(Y 2
S(V)/M(V) = T _ Tyet (13.5.3)
pV P

For fractional difference between the mean mass (M(V)) and actual mass in a particular volume

M),
_ M(V) = (M(V))

(13.5.4)
(M(V))
the probability density function p(6, V) is then a Gaussian with mean 0 and dispersion
A, = X(V)/M(V) = Zyo! (13.5.5)
P
As before, the probability that a volume V is bound by a, is
1 Acrital )
P = —erfc( (13.5.6)
2 \/EA*GZ
but we now substitute the expression (13.5.5) so that
1 1Y% Acrivay 1— )
P = —erfc|— vy (13.5.7)
2 (O- \/Eaz
1 1 Agica; 1- )
= —erfc|————M “p° (13.5.8)
2 (0- \/§a2
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which is Eq. 18 in PS74. In general,

d 2ab exp (—a?&?h) &1
d—ferfc(afb) = - (\/7_1 ) (13.5.9)
The differential probability distribution is then
P 1 2 Aga _ L AL 4y o0
— == —— (1 —a)M Y exp|-————p M~ 13.5.10
M~ 20w vaa LY Xp( 7 22 ¥ ( )
and the number density is
dN oM - o 1 ALai o —a
T =pl* (a_z) (Tt \2/7(1 — )M lexp(—?#pZ M- (13.5.11)
2

which is Eq. (19) in PS74, apart from the factor of two that PS74 introduce to account for the
underdensities. Eq. 13.5.11 is thus of the form

dN M 2(1-a)
M exp(— [V] ) (13.5.12)

where M* « a;/[2(1—0)] — aé/(l—a)
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Solutions, Cosmology 2016/2017, Week 14

14.1 Decaying potentials

Assume for simplicity that the perturbation is spherical. For a particle located at physical dis-
tance R from the center, the Newtonian potential is then (from the shell theorem)

GM
=___ 14.1.1
. (14.1.1)
hence the part of this due to a perturbation of mass 6M is
oM
SV = —GT (14.1.2)

In an expanding Universe, R o a, so if the overdensities cannot grow then we immediately see
that
¥ «ca! (14.1.3)

1.e., the perturbations of the potential 0¥ decay as the Universe expands, as long as the pertur-
bations grow more slowly than a.

In the linear regime, we have
)
P a (14.1.4)
P
For a fixed co-moving distance r from the centre, M(r) ~ const, while the physical distance is

R = ar. So we have

SM &
B _Pa (14.1.5)
M p
50 GoM G
o = — 2% o« _ 29 _ const (14.1.6)
R ar

14.2 Newtonian equivalence of metric perturbations
e The general expression for the Christoffel symbol is

gl” ag av 6gﬂv ag o
M - 2 —
Pog = 5 [M s (14.2.1)

For I, we have .
j glv agOv agOV 3800
Moo = = + — 14.2.2
) [ ax" ' ax"  ox ] ( )

Since the metric is diagonal, this is non-zero only for v = i so we have

i g_” dg0i . 08 _ 9800
r()() = > | 30 + 90 axi] (1423)
o 1H200y 9l -29) (14.2.4)
2 ox'
1+2¢|.0¢
= 2— 14.2.5
2 ax’] ( )
= (1+ 2¢)6—¢. (14.2.6)
ox!
d¢
~ = 14.2.7
ox! ( )
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where the last step follows by elimination of the second-order term gb%.

e In addition to Iy from above, we also need the other spatial Christoffel symbols:

|

1

_ g_kv 0giv n (9ng _ agii
2 |ox]  oxt Ox
_ g_kk [0gik + 0g jk _ 38:‘/’]

2 |ox/  Oxt  Oxk

These are non-zero only for i = j = k, in which case we get

And

i
rii

P i
Iy =1

oq

oxt  oxt  Ox

_ ' [0gii

- 55

_1-2¢[8(1 - 2¢9)
2 [ ox! ]

_ 9
Ox!

[%4_ 0gii 381'1]

B Y

N %%

g [dg0i | 08ji 08,
2 |ox)  O0x0  ox
g" [98ii
2 | 6x0

Again, non-zero only for i = j, where we get

poo_ =2 [01 - 2¢]

2

_9¢
ot

ot

Then we can go on to look at the geodesic equation:

d?x
daz

On the left, we have

i

dx® dx® o dx?dxd o dxtda®

1 1

. dx'dx

Cogr ot Tvmar  Maa o
[0 dx®dx®  0pdx"dx’  O¢ dx’ dx®

O0¢ dx dx!

|0xi dA dA 4t dA dA 0r dA dA
- :%POPO -~ g—i’PoP" -~ Z—(fPoPi -~ %prf]
% (P = (PY]
_%(Po)z
$x_ ddd_dP_dPidr_dP
di2  dada  dd drda dr
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Axi dA da

|
|

(14.2.8)

(14.2.9)

(14.2.10)

(14.2.11)

(14.2.12)

(14.2.13)

(14.2.14)

(14.2.15)

(14.2.16)

(14.2.17)

(14.2.18)

(14.2.19)

(14.2.20)

(14.2.21)

(14.2.22)
(14.2.23)

(14.2.24)



Then we get

dP' oy _ 09

— = (P%)? 14.2.25
dr Gx’( ) ( )
dp dp
- = _Ip 14.2.26
dr oxt ( )
d/( dx; d?x! 0p
— (=== = ——Zp° 14.2.27
dt (m dt) "ar Ox' ( .

For a non-relativistic particle we have P’ = E = m(c?) + 3mv?, which is dominated by the
rest mass term, E ~ m(c?). Thus m cancels out and we get

d?x 0p
—_— == 14.2.28
dr? Ox ( )
which is what we wanted to show.
14.3 Four-momentum of photons in perturbed FRW metric
For the other P': we expand the g;; and get
P o= gP'P (14.3.1)
i 2 112 i
po= [a (1+ 2@)] (P) (14.3.2)
i il 2 -172
P = p'la(+20) (14.3.3)
~ 11(1 - 0) (14.3.4)
a
1-®
= pp—— (14.3.5)
a
14.4 The momentum time derivative
e We start from the geodesic equation,
d?x+ dx® d?
— =Tt p—— 14.4.1
2 Pda da ( )
and use the definition of the four-momentum,
]
pro= 3 (14.4.2)
da
The zeroth component of the geodesic eqn. is then
dP®
— =T 4P"P* 14.4.3
1 p ( )
For the left-hand side, we have
dpP° dP® dr dP°
— = ——=—P° 14.4.4
da dr dA  dr ( )
d
= Poap(l - ¥) (14.4.5)

52



so that

d
P op(1=¥) = TP PP (14.4.6)
or
d 1-9) = -1° il 14.4.7
EP(—)——aﬁW (14.4.7)
P(IPﬁ
0
- Y (14.4.8)
Pp(1 %)
pPeps
= IV (1+9) (14.4.9)

which is Eq. (4.23), p. 91.

o Next, the left-hand side is expanded:

d d
—p(1-¥) = — ¥ 14.4.10
ot ) PP ( )
dp (dp d¥
= L _[Ey4p— 14.4.11
dt (dt TPy ) ( )
d¥
= —(1 -¥)-p— (14.4.12)
dt
Inserting this into Eq. (14.4.9), we get
d‘P PpPP
—(1 -¥) - Py =T 1+%) (14.4.13)
or 5
d dv PP
d—l;(l -¥) = P~ | 1+%¥) (14.4.14)

which is Eq. (4.24).

e Next, multiply both sides by (1 +'¥) and continue dropping terms that are quadratic in ‘P

d d¥ P PP
d—‘l;(l —P)Y(1+¥) = pa(l +W¥) -1, (1+¥)? (14.4.15)
d d¥ PoP?
L) = pe—(1+ W) - T (1+29) (14.4.16)
dr dr
d PoPP
d’: - p—(l ¥) - 05— (1 +2) (14.4.17)
Express d¥/dr in terms of partial derivatives:
d¥ 0¥ I¥ox
or_gr 9t or 14.4.18
d o ox o ( )
where PR
T _Prv_o) (14.4.19)
ot a
¥ d¥ G‘P oY p
— +—(1+¥-® 14.4.20
& o ox ( ) ( )
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Inserting this in Eq. (14.4.17), we get

dp oY p oY o P*PP
—=p|l=+——=0+¥Y-D)|(1+¥P)-T7, 1 +2¥ 14.4.21
i p(at+aaxl(+ ))(+) B (1+2%) ( )
There are some more second-order terms to be gotten rid off:
oY p oY
—+£—_(1 +¥Y-0)|(1+Y) (14.4.22)
ot adx
oY povY oY p oY
= ¥Y—+——0+¥Y-0 —+——(1+¥Y-0 14.4.23
(6t+aﬁx’( " ))+(6t+a6x’( " )) ( )
oY p' oY oY p oY
= ¥Y—+¥Y——1+¥Y-O)+ —+——(1+¥Y - 14.4.24
8t+ aﬁx’( " )+0t+a(9x’( " ) ( )
Removing terms involving ¥? or Y@ leaves:
oY poyY o¥Y povY

Vo +YV——+ — + ——(1+¥Y -0 14.4.25
ot adxt Ot a Gx’( ) ( )
But also the terms d¥/dx' and W/0t are first-order terms (i.e., non-zero only for per-
turbed solutions) so we can also remove terms involving Yo¥/dx!, 0¥ /dx', and YOV /ot,
which are then second-order:

oY poY
= —+—=—— 14.4.26
ot aox ( )
We have now reduced Eq. (14.4.21) to
dp oY p oY o P*PF
—=p|l=+—==|-T7, 1+2¥ 14.4.27
dr p(8t+a6x’) p p (1+2%) ( )
which is Eq. (4.25).
Now we need to evaluate the Christoffel symbol,
00
8" |98e0  Ogm0  O8ap
I0,;=2- + - 14.4.28
P~ [ o " oxe 0x0 ( )
with the metric g,, given by
-1 -2¥(x,1) 0 0 0
_ 0 a’[1 +2®0(x, 1)] 0 0
Buv = 0 0 2[1 +20(x, 1)] 0 (14.4.29)
0 0 0 a*[1 +2d(x, 1)]
Because of the symmetry in @ and 3, we can write the Christoffel symbol as
00
8" |,0800  98ap
== — 14.4.30
D) [ OxF X0 ] ( )

and from Eq. (14.4.29) we have gy = —1 —2¥(x, 1), so g% = —1 + 2¥(x, ¢). Furthermore,
x° = ¢, and therefore

0
Faﬁ:

1429 b2,
al [2‘9&’0 - gﬁ] (14.4.31)

2 0xB ot
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Going back to Eq. (14.4.27), we now include the factor P*P?/p, and get

o P*PP _ —1+2¥ | .0gq0 B 08up | P*PP
o* p 2 OxB ot p
We first concentrate on the second term,
8gaﬁ PpPP _ (9g00 POpP° agij PiPI
o p ot p ot p

0¥ PP gy PP/
ot p o p

(14.4.32)

(14.4.33)

(14.4.34)

Previously, (Eq. 4.14, p. 89) it was found that P0 = p/ V1 + 2%, so the first term is

oY P°P° o pp

ot p ot p(1 +2%)
oY

“——p(1 -2¥
o p( )
v

arp

X

(14.4.35)

(14.4.36)

(14.4.37)

where again the second-order term involving (0¥/df)¥ has been dropped. For the second

term we need the derivatives of the metric,

8gl~j 6 2
DU 521+ 20
ot igp 1+ 20]
0D oa®
= 5,']' ZGQE-I-(I +2(D)E

oD
= & 2a25 +2(1 + 2®)aa

AD a
= 5 2a25 +24°(1 + 2@)5)

oD
= & 2a25 +2a*(1 + ZCI))H)

= 2d%; (%‘f +H(l + 2(1)))

We can now fill these results back into Eq. (14.4.34), and get

0o PPP 0¥ L. (0D Pipi
— e L — 2 p—2d%;|— + H(1 +2®
ot p TR W (1+20)

which is Eq. (4.28) in the book.
To eliminate the factor 6;;P'P’/p, we use the result from (4.19),

i Y
P =pp—

i.e.
PP
§ij—— = p*(1 = 2®)/d?/p = p(1 — 20)/d>
P
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(14.4.38)

(14.4.39)

(14.4.40)

(14.4.41)

(14.4.42)

(14.4.43)
(14.4.44)

(14.4.45)

(14.4.46)

(14.4.47)



We now go back to Eq. (14.4.32) and can write

(14.4.48)

4+ H(+ 2@)) (1- 2@}4,4,50)

(14.4.51)

- Pepr -1 +2¥ ’28gao _ Ogap| P°PF
P 2 7o or | p
—1 +2¥ | _0gq0 P*P° oY 5 [0D
= 2 +2—p—-2a°'|— + H(1 +2® 1-
T [Pae 2 2 |Gy L 20) ) p(1 - Qi)
—1+2¥|_0g,0 P*PP oY 0o
= 2 +2p— -2
2 "o p T p(ar
Finally, we need to evaluate the sum
0ga0 P*PP
ox® p

Because the metric is diagonal, this is non-zero only for @ = 0, so that
6ga0 PQPB ago() POP’B
ox® p ox8  p
oY P°PP
ox% p

oY
= ‘Zﬁ(l - )PP

o¥Y
= 25

(14.4.52)

(14.4.53)

(14.4.54)

(14.4.55)

where, in the last step, we have again dropped the second-order term (0'¥/0x)¥. Thus,

we get Eq. (4.29):

o P°PP 142V

I =
5, >

¥
—4a—xﬁpﬁ +2p— —2p

ot

oY oD
ot

— + H(l + 2(1)))(1 - 2<D)]

(14.4.56)

We can simplify this further, by noting that (1 + 2®)(1 — 2@) = 1 — 4®? ~ 1, and we can

drop the second-order term (0®/dt)®, so that

P°PP —1+2¥ oY oY oD
o, = —4—PP 4 2p— —2p|—+H
A 2 o P TP ( o1 )]
We now need to finish evaluating the sum in the first term:
oY oY oY .
—pPF = Pl P
0xB ot ox'!
oY oY 1-0
= —p(l-¥)+—pp'
ar )+ oph—
oY N oY pp'
- P ox a

Inserting it in Eq. (14.4.57), we get

PUPP 14 2¥[ (3Y  ¥pp\ . 0¥ _ (0D
r, - 4%, P 5T, (90
A 2 (8tp+8x’a)+ P p(az+
o _Q¥pp (00
S, ) I A L N Ly 2
1+ )[pat % a p(8t+ )]
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(14.4.57)

(14.4.58)
(14.4.59)

(14.4.60)
(14.4.61)

)114.4.62)

(14.4.63)



which is Eq. (4.30).
We can now insert this in Eq. (14.4.27),

dp oV P oY o oY pp D
= = plm—+E=|-(-1+29)|-p— - 2— —p|=— + H|| (1 d2%)4
di (6t+a6x’)( P P T 2 e TP\ )| HEReD)
o pov o oY pp D
= pl=—+ 2= |+ -29) +29) |-p— —2—LL _ p[= 4,
p(8t+a(9x’)+( )+ )[pat ox a p(aﬁﬂa 63)
oY pOY\ oF oY pp oD
= pl—+==|-p— 2= -p|=—+H 14.4.66
p(6t+a0x’) Por "% d p(az+ ) ( )
oY ppioY  aY oY pp o
= p—+ - _p— T g 14.4.
Por " waw e T ox a ar (14.4.67)
Simplifying further, we finally get
dp 0o p oY
b _ (g8, Pt 14.4.
dr p( +6t+a(9x’) (14.4.68)
which is the desired Eq. (4.32).
14.5 First order terms of the Boltzmann equation for photons
® Wehave df of p'of of 0o 0¥
P P
Lo P+ —+ 5= 14.5.1
dt ~ or " aox pap[ +0t+a8x’] (14.5.1
and 570
frro-p2 e (14.5.2)
op

We insert Eq. (14.5.2) in Eq. (14.5.1) and get

df 9 (.0 Of°
I —p——_ 0
it~ o (f P=ap
i (0)
+Pi(f(0)_paf_@)
ap

P PY0 oD p oY
9 (fm) _ Pg_p@) [H Tpep %@} (14.5.3)

On the first line, we can eliminate the zero-order term 9f°/dt, on the second line the
derivative df°/dx vanishes (since f® does not depend on x%), and the zero-order term
Hpdf°/dp (third line) can also be eliminated (since we are only interested in the first
order terms). The remaining terms are

df d (0f©® pa (of®
—| =-p— O|-p—— Q)
dr | ot\ dp a ox'\ dp
AafO[od pl oY a ( of® oD p oY
- —+—— — O||H+ —+——| (1454
p op | ot * a ox! +p(9p p op " ot  a ox ( )
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In the second term on the last line, the terms proportional to G)% and G)% are second-

order and can be eliminated. Since f does not depend on x, the %%;0)@) term simplifies
to %(O)% Then we are left with:
p 0x
df| _ 0 (0F N P00 (or®
dr |y ~ P dap a ox'\ dp
afO[od p' oY o ( of®
- —+—— |+ Hp®O— 14.5.5
p(?p ot a ox p op p@p ( )
This is Eq. (4.40) in the book.
e We are comparing
o ( of©
Hp®—|p / (14.5.6)
op op
and 51 5O
dT/dt
) [dt 6 p f (14.5.7)
T op\" 0Op
From Eq. (4.38) in the book (that follows from looking at the zero-order terms) we have
that
dT/dt da/dt '
[di_ _dajdt__a_ _, (14.5.8)

T a a
which gives the desired result.

14.6 Exercise 5, Chapter 4

Why the factor 1/p in front of the equation for the collision terms (Eq. 4.45 in the book)? This
is Exercise 5, p. 114: In GR, it would be more appropriate to write the derivative of f in terms
of the affine parameter, A:

df

— = 14.6.1

i1 ( )
whereas we use the time derivative explicitly (Eq. 4.1):

df

—=C 14.6.2

m ( )

Using the implicit definition of A via the four-momentum, we can go from one to the other using

df dfdr df , df
o p_ -y 14.6.
a1 drdl dr a P4 =% (1463

That is,
C’'=Cp(1-Y) (14.6.4)

or, dropping the term C¥ since both factors are first-order terms (zero in equilibrium) and the
product therefore second-order:
cC=Clp (14.6.5)

This explains the factor 1/p.
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14.7 The Einstein tensor in the perturbed FRW metric
o We start withu =v =0:
1
I = Egm (8200 + 8200 — &00.c] (14.7.1)

Because the metric is diagonal, only terms the terms multiplied by g% are non-zero. Since
Y is a small perturbation, we have

g0 =1/gp ~ -1 +2¥ (14.7.2)
SO
-1 +2¥
Iy = — [800.0 + 800.0 — 8000] (14.7.3)
-1 +2¥
= T(goo,o) (14.7.4)
_14 2% (=1 -2¥)
= 14.7.5
2 ot ( )
-1 +2¥
- (2% (14.7.6)
~ ¥ (14.7.7)

where, in the last step, we have as usual dropped the second-order term W' ;.

e Then we go on to look at one of the two indices u or v being spatial, while the other
remains O (time). We thus evaluate

1
1"0#0 = Egoa [gay,o + gaO,y - guO,a] (1478)

(we could also have started with ¢ = 0 and v spatial; because of the symmetry the result
is the same). Again, only the terms with @ = 0 count, so

% = %goo [g0i0 + go0.i = &ioo] (14.7.9)

= % [g0i0 + go0.i = &ioo] (14.7.10)

where i as usual refers to a spatial index. Because of the symmetry, the first and last terms
cancel so

% y [g00.] (14.7.11)

= %(—2‘1&) (14.7.12)

Eliminating again the second-order term YV ;, we get
% =T% =%, (14.7.13)
Finally, moving to Fourier space, the spatial derivatives are
¥, = ik ¥ (14.7.14)

where k; is the wave number corresponding to the component i.
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e Both indices spatial: As usual, terms with a # 0 are zero, so

1
o = 5800 [gOi,j + 80ji — gij,O]

(14.7.15)

Here, the two first terms in the brackets are zero (because the metric is diagonal), and g®

is the same as in the other cases, so

-1+2¥
Y, = 5 [_gij,O]
1-2% [ 0a*[1 + 2@]
= Sij

2 ot

1-2v
= —5—dy |2aa[1 +20] +22°D |

= 6,(1 - 29)a’ [aa/a’[1 +20] + D]

= 6;;(1 -2¥)a’ [H[1 +20] + @]

= 6;a° [H[1 +20] + @ — 2PH[1 + 20] - 29D g
~ 6;a [H[1 +20] + ®y — 2¥H]

and finally

% = 6;a* [H + 2H(® - ¥) + ]

which is Eq. (5.6) in the book.
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(14.7.18)

(14.7.19)

(14.7.20)
(14.7.21)
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Solutions, Cosmology 2016/2016, Week 15

15.1 Momenta of the photon perturbations

Show that
! 2 4
f dup* @) = 5@0—5(92 (15.1.1)
-1
The second moment (®,) is defined as
1! 2.1
@, = ——fd,ﬁ“ ) (15.1.2)
2 J. 2
. f1d§2®(u)—fld1®w) (15.1.3)
AW P ars et o
3 (! 1!
= _Zf d,u,u2®(,u)+1f du®(u) (15.1.4)
-1 -1
4 by 1 (!
302 = - | dwlew+ 3 | dudw) (15.1.5)
-1 -1
so we have
1 1 1 4
f du’O(u) = 3 f duO(w) - 30, (15.1.6)
-1 -1
2 4
= Z0)--0, (15.1.7)

3 3

15.2 From inhomogeneities to anisotropies (I)

e This follows from straight forward evaluation, remembering that ® also depends on 7:

e—ikm}ﬂ'i [@eik,un—-r] — e—ikm]+‘r [@eik,un—‘r + @(lk/l _ i-)eikﬁﬂ—“'] (152])

dn
= O+ (tku — 17)® (15.2.2)
e We multiply both sides by e*#1-7:
e—ikpn+‘reik/1n—‘ri [@eikyn—T] — Seiklm_T (1523)
dn
d ikun—t _ Q ikun-t
= |@em | = St (15.2.4)

and then integrate over n from 7y, to 1o (today):

0 i ikun—t _ 0 < ikun—t
dp— @] = dnSe (15.2.5)
dn Minit

Tinit

. . '70 ~ .
@(no)elk/ﬂlo—‘r _ @(ninit)elk}minit—‘r — f d?]S elk/n]—-r (1526)
Minit

. . 770 ~ .
O = @) T f S M (152.7)

Minit
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O170) = O@1]jyig) e HMinit=T g =ikI+T  pikyiro+ f dnS e*nT (15.2.8)
Tinit
At iy = today, we have 7(179) = 0 (per definition). Then

. . . 710 ~ .
BO(ny) = ®(771nit)€’k”m"“_T e ko - =ik f dnS e'kun—7 (15.2.9)
Minit
= G(Uinit)elkﬂ(m"“_m) e TUmni) o= ikiino f dnS ekun—t (15.2.10)
Tinit
. 770 o
O(no) = ®(ninit)etkﬂ(7linit—770)e—T(Uinit) + f dn§ k1 m—n0)=T(1) (15.2.11)
Minit

which is Eq. (8.45). If i, is very early, then the optical depth 7(7;,;:) > 1 and the first
term vanishes: o
@(770) ~ f dng eikﬂ(ﬂ—no)—T(U) (15212)
Tinit
In other words, the initial perturbations do not affect the visible anisotropies. For the
same reason, it makes no difference if we integrate from n = 0 or some time very soon
thereafter, so we can set the lower limit of the integral to O:

710 )
O(no) = f dng ekuar—no)=7() (15.2.13)
0

15.3 From inhomogeneities to anisotropies (II)
Hand-in
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