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Werkcollege, Cosmology 2016/2017, Week 4
These are the exercises and hand-in assignment for the 4th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 4.2 below.

Flux and intensity
In the lecture we discussed the fundamental concepts flux (the energy passing through a unit
surface per unit time) and intensity (flux per solid angle). In S.I. units, flux is expressed in units
of [W m−2] and intensity in [W m−2 sr−1]. In many practical applications, it is more useful to
specify the flux density (or specific flux), i.e., the flux per unit wavelength (Fλ) or frequency
(Fν) interval, and the corresponding quantities for the intensity (Iλ, Iν). The flux density is often
expressed in Jy, where 1 Jy = 10−26 W m−2 Hz−1. The total flux is then, in principle, found by
integration over all wavelengths (or frequencies):

F =

∫
Fλ dλ (4.0.1)

or
F =

∫
Fν dν (4.0.2)

In practice, measuring the specific flux at all wavelengths is difficult, and we sometimes also
refer to the flux integrated over a specific wavelength region, such as a particular photometric
band.

4.1 Fλ and Fν

Show that Fν and Fλ are related as
Fν

Fλ

=
c
ν2 =

λ2

c
(4.1.3)

4.2 Flux of astronomical objects
The brightest star in the sky, Sirius, has a radius of about 1.75 R� and a temperature of 9900 K.
Its distance is 2.6 pc.

1. Approximating the spectrum of Sirius by a black-body with Teff = 9900 K, calculate the
specific intensity Iλ of light emitted at 5500 Å (i.e. at the centre of the V-band)

2. Making the approximation that Iλ is constant over the wavelength range covered by the
V-band, and assuming that the bandwidth is ∆λV = 900 Å, what is the V-band intensity
IV of the light emitted by Sirius?

3. Calculate the V-band flux from Sirius measured above the Earth’s atmosphere. (Hint:
you may make use of the fact that the intensity of black-body radiation is independent of
the viewing angle. The integral

∫ π/2

0
sin θ cos θ dθ = 1

2 might be useful).
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4. How many V-band photons would enter the aperture of the Hubble Space Telescope per
second if it were pointed at Sirius? Assume that HST has a circular aperture with a diam-
eter of 2.4 m. You can also assume that all photons have the same energy, corresponding
to λ = 5500 Å.

4.3 Flux, Magnitude and Surface Brightness
The flux density received from the star Vega (above the Earth’s atmosphere) is Fν = 3.6× 10−23

W m−2 Hz−1 in the visual region of the spectrum. Vega has a visual magnitude mV = 0.

1. Calculate the visual magnitude of a source with a flux density of F = 1 Jy

2. The faintest stars visible to the unaided eye under a dark sky have visual magnitudes
V ≈ 6. Calculate the limiting sensitivity of the eye in Jy.

3. In astronomy, the term surface brightness is sometimes used instead of intensity. The
natural night sky has an average visual surface brightness of about 22 mag arcsec−2 at
new Moon (meaning that the flux received from one square arcsecond of blank sky is the
same as that received from a 22nd magnitude star). Over how large an area of the sky
does one need to integrate to get a flux similar to that of the faintest naked-eye stars?

Formulae and constants
Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1
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Werkcollege, Cosmology 2016/2017, Week 5
These are the exercises and hand-in assignment for the 5th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 5.5 below.

5.1 Distance and distance modulus
Show that an error or uncertainty of 0.1 magnitudes in the distance modulus, m−M, is roughly
equivalent to a 5% error in the distance, D

5.2 Moving cluster method

Fig. 1: The star cluster discussed in Problem 5.2.

A star cluster is observed to have a proper motion µ = 0.110′′ yr−1 and radial velocity vr = 40
km s−1. The proper motions of stars in the cluster appear to be converging towards the point
Pconv, located at an angle of θ = 30◦ from the centre of the cluster on the sky.

1. Calculate the distance to the cluster

2. What was the smallest distance between the Sun and the cluster, relative to the current
distance?

3. When did the closest passage occur? Show that this can be calculated without knowing
the distance of the cluster!

4. Assuming effects of stellar evolution and extinction are negligible, when will the apparent
brightness of the cluster have decreased by 1 magnitude?
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5.3 Cepheids
The relation between the mean apparent visual magnitude mV and the period P (in days) for
Cepheids in the Large Magellanic Cloud (LMC) is observed to be

mV = −2.5 log10 P + 17.0 (5.3.1)

For the Galactic Cepheid δ Cep, a trigonometric parallax of 3.8 × 10−3 arcseconds is observed.
δ Cep has log10 P = 0.73 and a mean apparent magnitude mV = 3.8.
In the following, assume that Cepheids everywhere follow a universal period-luminosity rela-
tion. You can ignore the effects of interstellar extinction (or, to put it differently, assume that all
measurements have been corrected for this effect).

1. Find the distance to the LMC.

2. A Cepheid in the galaxy M100 has apparent mean magnitude mV = 27.1 and period
P = 10 days. Find the distance to M100.

5.4 Baade-Wesselink method
This exercise is taken from the book “Galactic Dynamics”, J. Binney & M. Merrifield

A star expands in a spherically-symmetric manner with radial velocity vr. Defining a spher-
ical coordinate system on the surface of the star with the polar axis aligned along the line of
sight, show that the measurable flux-weighted mean line-of-sight velocity will be

vlos = vr

∫ π/2

0
I(θ) cos2 θ sin θ dθ∫ π/2

0
I(θ) cos θ sin θ dθ

(5.4.1)

Hence show that, for a star of uniform brightness, p = vr/vlos = 1.5. In reality, a star will not
appear uniformly bright: its opacity means that near the edge of the star (its “limb”) one cannot
peer so far into its atmosphere, so one sees the less bright outer layers. A reasonable analytic
approximation to this limb darkening is given by I(θ) = I(0)(0.4 + 0.6 cos θ). In this approxi-
mation, show that p = 24/17.

5.5 K-corrections
The K-correction is the difference between the observed magnitude mobs(z) for a source at red-
shift z and the magnitude that would be observed if the source were at rest, mrest:

mrest = −2.5 log10

∫
f (λ)S (λ) dλ + const (5.5.1)

mobs(z) = −2.5 log10

∫
f (λ′)S [λ′(1 + z)] dλ′ + const (5.5.2)

(5.5.3)

In addition to the redshift z, the K-correction depends on the spectrum of the source (here
expressed as a function of wavelength, f [λ]) and the spectral response of the system used for
the observations, S (λ). The K-correction is a purely instrumental effect that simply accounts
for the fact that light emitted at wavelength λ′ is observed at wavelength λ. It does not take into
account the cosmological effects of the redshift due to the expansion of the Universe.
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1. Show that (5.5.2) and (5.5.1) lead to the following expression for the K-correction:

K = mobs − mrest (5.5.4)

= 2.5 log10

∫
f (λ)S (λ) dλ∫

f [λ/(1 + z)]S (λ) dλ
+ 2.5 log10(1 + z) (5.5.5)

2. Find and write down the equivalent expression for the K-correction in terms of the spec-
trum as a function of frequency, f (ν)

3. Calculate the K-correction for a source with a power-law spectrum, f (λ) ∝ λβ. To sim-
plify the calculations, you can approximate the bandpass transmission curve S (λ) as a
box function, i.e., assume that S (λ) is a (positive) constant for λ1 < λ < λ2 and zero
elsewhere.

Formulae and constants
Distance modulus (D in pc):

m − M = 5 log10 D − 5

Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1
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Werkcollege, Cosmology 2016/2017, Week 6
These are the exercises and hand-in assignment for the 6th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 6.1 below.

6.1 Mass distribution of the Milky Way
a. Assuming that the mass distribution in the Milky Way is dominated by a spherically

symmetric dark matter halo, show that a flat rotation curve implies the following density
profile:

ρh(R) =
v2

c

4πG
R−2 (6.1.1)

where R is the galactocentric distance and vc the circular velocity.

b. For a circular velocity vc = 200 km/s, R0 = 8 kpc, calculate the density of the dark matter
halo near the Sun.

In reality, other components of the Milky Way make non-negligible contributions to the mass.
Near the Sun, the density of the stellar disc is about ρd(R0) = 0.08 M� pc−3. Assume that the
Sun is located at the midplane of the disc and that the vertical density distribution of the disc is
exponential with scale height zscl = 300 pc.

c. At R0, how far above the Galactic plane, z, is the density of the disc equal to that of the
dark halo estimated above? (you may assume that ρh is independent of z for fixed R = R0).
If you did not find an answer in 6.1.b you may assume ρh(R0) = 0.02 M� pc−3 but note
that this is not the correct answer.
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6.2 Two-body relaxation
The process of two-body relaxation plays a very important role in stellar dynamics. Over time,
it drives the distribution of stellar velocities towards a Maxwellian equilibrium distribution,
so that any memory of the initial conditions will eventually be erased. For the typical stellar
densities and relative velocities encountered in galaxies the two-body relaxation time scale is,
however, very long, so that present-day galaxies still retain some memory of their formation
conditions. In this exercise we go through the derivation of the two-body relaxation time scale.

Consider an encounter between two stars. Assume for simplicity that both stars have the same
mass, m. We use a coordinate system in which one star is initially moving along a straight line
with velocity v‖, equal to the typical relative velocities V of stars in the system, and the other
is stationary. Continuing along this path, the minimum separation between the two stars ((the
impact parameter) will be β (see figure), and the star will experience an acceleration a due to
the mutual gravitational attraction between the two stars. Clearly, by Newton’s 3rd law, the
other star will experience an acceleration of the same magnitude but opposite direction. The
component of a perpendicular to v‖, a⊥, will produce a net velocity v⊥ perpendicular to v‖ after
the encounter.

One distinguishes between strong and weak encounters, where an encounter is said to be
strong if the smallest distance of the stars during the encounter (β) is such that the (absolute)
potential energy |U(β)| is equal to (or greater than) the mean kinetic energy of a star.

a. Show that a strong encounter corresponds to an impact parameter

β <
2Gm
V2 (6.2.1)

In the solar neighbourhood, the mean volume density of stars is about n = 0.1 pc−3. Typical
relative velocities are 10 km/s, and the average mass of a star can be taken to be m = 1M�.

b. Show that the mean rate of strong encounters per star is

dnenc

dt
= 4πG2nm2V−3 (6.2.2)

Hence, demonstrate that the Sun is unlikely to have experienced a strong encounter in its
lifetime.

From the above, it follows that most stellar encounters are of the weak type. This means that
the velocity change of a star, during any one encounter, is typically small (v⊥ � v‖). It is the
cumulative effect of many distant encounters that will, eventually, be important. For further
calculations, we will thus evaluate the forces and accelerations as if the first star continues
moving along the original path and the second star remains stationary.
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c. Under these assumptions, show that the acceleration of the star perpendicular to v‖, inte-
grated over all positions along the path, produces a perpendicular velocity

v⊥ = 2
Gm
βv‖

(6.2.3)

You may find the following integral useful:∫
dx

X
√

X
= 2

2ax + b

∆
√

X
(6.2.4)

where X ≡ ax2 + bx + c and ∆ = 4ac − b2.

For relative velocities V ∼ v‖ and stellar density n, the number of encounters with impact
parameter between β and β + dβ in a small time step dt will be

d2Nenc = 2πβnV dβ dt (6.2.5)

Since the encounters may occur in random directions, the total effect of many encounters (∆V)
is found by adding the contributions of each encounter (6.2.3) quadratically,

∆V2 =
∑

v2
⊥ (6.2.6)

d. Hence show, by integrating over impact parameters in a range βmin < β < βmax, that the
total (average) velocity change in a small time step dt is

〈dV2〉 =
8πG2m2n

V
ln

(
βmax

βmin

)
dt (6.2.7)

It is not obvious what to pick for βmin and βmax, but since only the logarithm of the ratio of
these two quantities enters in the expression, their exact values are not important. Usually, it is
reasonable to assume ln Λ ≡ ln

(
βmax
βmin

)
≈ 10. The quantity ln Λ is also known as the Coulomb

logarithm.
Finally, the two-body relaxation time scale, trelax, is now defined as the time that it takes

for the effect of the cumulative distant encounters to produce a velocity change similar to the
average relative velocities of the stars, 〈dV2〉 = V2.

e. Assuming that the density and average relative velocities are constant in time, show that
this is now given as

trelax =
V3

8πG2m2n ln Λ
(6.2.8)

which is the expression discussed in the lecture.
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Formulae and constants
Distance modulus (D in pc):

m − M = 5 log10 D − 5

Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

Mass of the Sun: M� = 2 × 1030 kg

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1

Gravitational constant: G = 6.673 × 10−11 m3 kg−1 s−2
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Werkcollege, Cosmology 2016/2017, Week 7
These are the exercises and hand-in assignment for the 8th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 7.2 below.

7.1 Rotation of “Spiral Nebulae”
In 1914, V. M. Slipher deduced from spectroscopic observations of the Sombrero galaxy (NGC 4594)
a rotational velocity of about 100 km/s (at 20′′ from the nucleus). Slipher had also measured
positive radial velocities for many spiral “nebulae”, often several hundred km/s.

Around the same time, Adriaan van Maanen compared several images of M101 taken over
a period of about 15 years and measured an annual rotation of 0.022′′ at a distance of 5′ from
the centre (meaning that, according to van Maanen’s measurement, a point located 5′ from the
centre would move 0.022′′ in a year). Van Maanen’s measurement was used by Harlow Shapley
in the “great debate” as one argument against the idea that spiral nebulae are external galaxies
similar to the Milky Way.

Let us now explore some of the implications of these measurements:

1. Based on van Maanen’s measurement, what is the rotation period of M101 (in years)?

2. Shapley had estimated that the Sun is located about 15 kpc from the centre of the Milky
Way. If the Sun is orbiting around the centre of the Milky Way with the same period
as van Maanen’s measurement implied for M101, what would be the speed of the Sun?
In km/s? In units of c, the speed of light? Would you agree with Shapley that this is
unreasonable?

3. If, on the other hand, M101 rotates as fast as NGC 4594 (100 km/s), what would be the
distance of M101? Does this seem more reasonable? Why / why not?

Both Slipher’s and van Maanen’s observations were extremely challenging at the time. An
angle of 0.022′′ is tiny. G. W. Ritchie had already measured two of van Maanen’s plates before
and found no rotation. The spectroscopic measurements were based on exposures that had to
extend over many hours, and not everybody believed Slipher’s radial velcities, either.

4. The “plate scale” on the photographs used by van Maanen was about 30′′ mm−1. For two
observations made 15 years apart, what is the shift measured by van Maanen in mm?

5. If you had been attending the debate and knew what was known then, what would you
have concluded about the galactic or extragalactic nature of spiral nebulae?

12



7.2 Radiation Pressure and Radial Velocities
In the “great debate”, neither Shapley nor Curtis had a good explanation for the positive radial
velocities of the nebulae. Today we know that this is due to the expansion of the Universe itself,
but cosmology was still in its infancy in the 1920s and most people believed in a static Universe.
Shapley suggested, somewhat hand-wavingly, that the nebulae might be accelerated by radiation
pressure from the Milky Way. However, Henry Norris Russell was quick to demonstrate this
cannot plausibly work. In this assignment we examine some of Russell’s arguments.

Russell made a few simple assumptions:

1. Masses of the nebulae can be estimated from their rotation, assuming the standard New-
tonian formula for circular rotation (but note that, strictly speaking, this assumes a spher-
ically symmetric mass distribution). In 1921, such measurements were available for two
nebulae: M31 and NGC 4594.

2. The plane of a nebula is perpendicular to the line-of-sight towards the Milky Way.

3. A nebula absorbs all the radiation from the Milky Way that falls upon it.

4. As seen from a nebula, the Milky Way occupies half the sky.

5. Seen from a nebula, the intensity of the light from the Milky Way is similar to that seen
from Earth.

6. The intensity of the Milky Way corresponds to 3.5% of the flux from a 1st magnitude star
per square degree (this number came from measurements by the Dutch astronomer Pieter
van Rhijn, a student of Kapteyn). Such a star is a factor of 100.4×(1+26.7) = 1.2× 1011 times
fainter than the Sun.

7. Two measures of the “radius” of a nebula were considered: 1) an “inner” radius r, con-
taining the majority of the mass, and 2) an ”outer” radius R that represents the maximum
area on which the radiation pressure would act.

The momentum of a photon (or a collection of photons) with energy E is p = E/c. Also, recall
that pressure is force per area.

• Start by calculating the radiation pressure from a square degree of the Milky Way, seen
from a nebula. Show that this pressure is

P = 2.3 × 10−14 L�
c(1AU)2

where 1 AU = 1 astronomical unit = the distance from the Sun to the Earth, L� is the
luminosity of the Sun, and c is the speed of light.

• Next, show that the force on the nebula due to radiation pressure from by a whole hemi-
sphere is

F = 7.5 × 10−10 D2R2L�
c(1AU)2

for distance D.
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Hint: For radiation originating somewhere on the hemisphere, only the component of
the momentum vector perpendicular to the surface of the nebula (p⊥ in the figure below)
contributes to the acceleration. The integral

∫ π/2

0
sin θ cos θ dθ = 1

2 .

• Finally, show that the acceleration produced by radiation pressure is then

A = 7.5 × 10−10 L�G
c(1AU)2

DR2

rv2

for “inner” radius r, “outer” radius R, circular velocity v at r. G is the gravitational
constant.

Some of the assumptions made here (e.g. #4) may seem very unrealistic today, but it is
important to keep the context of this calculation in mind. Russell’s aim was to examine whether
radiation pressure could significantly affect the kinematics of nebulae, given Shapley’s view
that the Milky Way was very large, and the nebulae all essentially part of the Milky Way.

One of the few nebulae for which the necessary observations were available in 1921 was the
“Sombrero galaxy”, NGC 4594. NGC 4594 has a radial velocity of +1000 km/s. For r and R,
values of r = 150′′ and R = 210′′ may be assumed, as well as a rotational velocity of v = 415
km/s. The distance was very uncertain, but Russell assumed a distance of 1.43 Mpc or 4.4×1022

m.

• Under the above assumptions, calculate the current acceleration of the Sombrero galaxy
due to radiation pressure

• If the acceleration had remained constant, and the Sombrero were initially at rest, how
long would it have taken to accelerate to the current radial velocity?

• How far would the Sombrero have moved in this time?

Of course, the calculation above is extremely simplified. Which effects have been ignored?
How would the calculation change (qualitatively) if these were included?

14



7.3 Hot gas in dark matter halos
In the classical picture, gas is shock-heated as it falls into dark matter halos and must cool
before it can form stars. The rate at which the gas can cool is very sensitive to the composition,
because gas that is enriched in heavy elements can cool more efficiently via a large number of
atomic line transitions.

Recall that the r.m.s. velocity of particles in a gas with temperature T is given by

vrms =

√
3kT
µ

(7.3.1)

where µ is the mean molecular weight, µ ≈ 10−27 kg for a highly ionized plasma of typical
composition and k is Boltzmann’s constant, k = 1.38 × 10−23 m2 kg s−2 K−1.

• Show that we may expect the temperature of the hot gas to be related to the observed
line-of-sight velocity dispersion as

T = 72 × 106
(

σ1D

1000 km s−1

)2

K (7.3.2)
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Formulae and constants
Distance modulus (D in pc):

m − M = 5 log10 D − 5

Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

Mass of the Sun: M� = 2 × 1030 kg

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1

Gravitational constant: G = 6.673 × 10−11 m3 kg−1 s−2
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Werkcollege, Cosmology 2016/2017, Week 12
These are the exercises and hand-in assignment for the 12th week of the course Cosmology.
Every week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 12.2 below.

12.1 Cosmological surface brightness dimming (Wed)
In astronomy, the luminosity L of a source is the energy output per unit time (e.g. measured in
W), the flux is the energy passing through a surface of unit area per unit time (e.g. in units of
W m−2) and the intensity I of radiation is the flux per unit solid angle (W m−2 sr−1). It is straight
forward to show that the intensity is distance-independent in standard Euclidian geometry, as
long as there is no absorbing material between the source and the observer.

• Using the definitions of angular diameter- and luminosity distance, show that the intensity
of a source decreases with redshift as

I(z) = I0(1 + z)−4 (12.1.1)

12.2 Cosmological distances
(adapted from Reexam 2013/2014) (Wed)

Recall that a line element in the Friedman-Robertson-Walker metric may be written as

ds2 = −dt2 +
a2(t)

c2

[
dr2 + R2 sin2(r/R)(dθ2 + sin2 θ dφ2)

]
(12.2.1)

for scale factor a, co-moving radial coordinate r, and radius of curvature R.
We have seen that it is useful to define the angular diameter distance, DA, as

DA =
D

1 + z
(12.2.2)

for distance measure
D = R sin(r/R). (12.2.3)

With this definition, we then have following relation between the length dl of a standard rod,
oriented perpendicular to the line-of-sight, the apparent angular size of the rod dθ, and DA:

dl = DAdθ (12.2.4)

which is similar to the usual Euclidian relation.
The general expression for the comoving radial coordinate, r, is

r =

∫ t0

t1

c
a(t)

dt (12.2.5)

for light emitted from a source at t = t1 and received by an observer at t = t0. In general,
this expression must be integrated numerically, although analytic solutions are possible in some
cases. Here we explore one such case, the Einstein-de Sitter Universe.
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In an Einstein-de Sitter Universe, Ω0 = 1 and ΩΛ = 0. For this particular case, the cosmic
time t, the Hubble constant H0, and the scale factor a(t) are related as:

a(t) =

(
3H0t

2

)2/3

(12.2.6)

a. Show that, for an Einstein-de Sitter Universe, the comoving radial coordinate r and the
redshift z are related as

r =
2c
H0

(
1 − (1 + z)−1/2

)
(12.2.7)

Hint: The following integral may come in handy:∫ a

0
(1 + x)−3/2 dx = 2

(
1 − (1 + a)−1/2

)
(12.2.8)

b. Show that DA has an extremum at z = 5/4 in the Einstein-de Sitter Universe, and argue
that this must be a maximum. What does this imply for the apparent sizes of objects (of
a given linear size) as a function of redshift?

12.3 The Sunyaev-Zeldovich effect (Thu)
In the Sunyaev-Zeldovich effect, CMB photons are inverse Compton scattered to higher ener-
gies when passing through hot gas in galaxy clusters. The energy increment is

∆Eν/Eν = y (12.3.1)

where y is the Compton optical depth. This is illustrated schematically in the figure below:

23 Jul 2002 15:7 AR AR166-AA40-16.tex AR166-AA40-16.sgm LaTeX2e(2002/01/18) P1: IBD

646 CARLSTROM ⌅ HOLDER ⌅ REESE

the SZE caused by the hot thermal distribution of electrons provided by the ICM
of galaxy clusters. CMB photons passing through the center of a massive cluster
have only a⇡ 1% probability of interacting with an energetic ICM electron. The
resulting inverse Compton scattering preferentially boosts the energy of the CMB
photon by roughly kBTe/mec2, causing a small (.1 mK) distortion in the CMB
spectrum. Figure 1 shows the SZE spectral distortion for a fictional cluster that is
over 1000 times more massive than a typical cluster to illustrate the small effect.
The SZE appears as a decrease in the intensity of the CMB at frequencies below
.218 GHz and as an increase at higher frequencies.
The derivation of the SZE can be found in the original papers of Sunyaev &

Zel’dovich (Sunyaev & Zel’dovich 1970, 1972), in several reviews (Sunyaev &
Zel’dovich 1980a, Rephaeli 1995, Birkinshaw 1999), and in a number of more re-
cent contributions that include relativistic corrections (see below for references).
This review discusses the basic features of the SZE that make it a useful cosmo-
logical tool.

Figure 1 The cosmic microwave background (CMB) spectrum, undistorted (dashed
line) and distorted by the Sunyaev-Zel’dovich effect (SZE) (solid line). Following
Sunyaev & Zel’dovich (1980a) to illustrate the effect, the SZE distortion shown is for
a fictional cluster 1000 times more massive than a typical massive galaxy cluster. The
SZE causes a decrease in the CMB intensity at frequencies .218 GHz and an increase
at higher frequencies.
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At low frequencies (hν � kT ), the CMB black-body spectrum can be approximated by the
Rayleigh-Jeans formula,

Iν ≈
2ν2kT

c2 (12.3.2)

a. Convince yourself that an energy boost of the form (12.3.1) corresponds to a purely hori-
zontal shift of the CMB spectrum (when plotted as Iν, i.e. specific intensity per frequency
interval).

b. Then show that in the Rayleigh-Jeans limit, the decrease in the observed intensity is

∆Iν/Iν = −2y (12.3.3)
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Formulae and constants
Distance modulus (D in pc):

m − M = 5 log10 D − 5

Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

Mass of the Sun: M� = 2 × 1030 kg

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1

Gravitational constant: G = 6.673 × 10−11 m3 kg−1 s−2
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Werkcollege, Cosmology 2016/2017, Week 13
These are the exercises and hand-in assignment for the 13th week of the course Cosmology.
The hand-in assignment for this week is Problem 13.5 below.

13.1 Gravitational microlensing (Wed)
In 1986, Bohdan Paczyński suggested that dark matter in the form of massive compact halo
objects (MACHOs) would be detectable due to gravitational lensing of distant stars. Recall the
expression for the angular radius of the Einstein ring:

θ2
E =

4GM
c2

(
DLS

DSDL

)
(13.1.1)

where M is the mass of the lensing object, DLS is the distance from the lens to the source, and
DS and DL are the distances from the observer to the source and lens, respectively.

• A requirement for significant amplification of the source is that it is smaller than the
Einstein radius of the lens. Calculate the minimum detectable lensing mass, assuming
that the lensing objects are at a typical distance of 10 kpc and that the background stars
are solar-type stars in the Large Magellanic Cloud at a distance of 50 kpc.

• Show that, for a population of lenses with a uniform spatial distribution of (mass) density
ρ extending all the way to the source population, the optical depth is

τ =

(
2π
3

) (Gρ
c2

)
D2

S

• Show that, if the population of lenses forms a self-gravitating system extending all the
way to the source population, then the optical depth depends only on the velocity disper-
sion σ of the system:

τ ≈ σ2/c2

You will need to the following quantities:
1 R� = 7 × 108 m
1 pc = 3.08 × 1016 m
1 M� = 2 × 1030 kg
G = 6.67 × 10−11 m3 kg−1 s−2
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13.2 The flatness problem (Thu)
In this assignment we explore the evolution of the density parameter for matter, ΩM, with red-
shift/scale factor. According to the CMB measurements by the Planck satellite, the current value
is ΩM,0 = 0.31 while the dark energy density parameter is ΩΛ,0 = 0.69, making the Universe
exactly flat with Ω = 1.0.

• Recall that the critical density, at any epoch, is defined as

ρc = 3H2/8πG (13.2.1)

and the time derivative of the scale factor is given by the Friedman equation,

ȧ = H0

[
ΩM,0(1/a − 1) + ΩΛ,0(a2 − 1) + 1

]1/2
(13.2.2)

Now show that regardless of the present-day values of ΩM,0 and ΩΛ,0, the Universe ap-
proached an Einstein-de Sitter Universe with ΩM = 1 at high redshift.

• If the matter density is currently ΩM,0 = 0.3, then how much did it deviate from unity at
z = 1000?

This is the flatness problem: Why is the current value of ΩM close to, but not exactly unity?
It requires an exceedingly accurate degree of fine-tuning to produce the tiny departure from
ΩM = 1 at high redshifts that result in a present-day Universe whose density parameter is
neither very different from, nor exactly equal to unity.

From a practical perspective, however, it is very convenient that the Universe behaved as an
Einstein-de Sitter Universe until relatively recently (in cosmological terms). In terms of struc-
ture formation, the regime of linear grown occurred under conditions where the density was
very close to the critical value and the ΩΛ term negligible. At later epochs this is no longer the
case, but since the non-linear regime has to be treated numerically in any case the departures
from the Einstein-de Sitter Universe do not represent a very serious extra complication.

13.3 Parametric solutions to Friedman’s equation (Thu)
Show that the parametric solutions

a(θ) =
ΩM,0

2(ΩM,0 − 1)
(1 − cos θ) (13.3.1)

t(θ) =
ΩM,0

2H0(ΩM,0 − 1)3/2 (θ − sin θ) (13.3.2)

satisfy the Friedman equation (13.3.2) for ΩΛ,0 = 0 and ΩM,0 > 1.

13.4 Tophat model (Thu)
In the “tophat” model for the evolution of overdensities we consider each overdensity as a
“mini-Universe” with density Ω′0 > 1 that evolves in a “background Universe” with Ω0 = 1.
Hence, the scale factor of the background Universe evolves as

a =

(
3H0t

2

)2/3

(13.4.1)

while the overdensities evolve according to the parametric solutions in Problem 13.3.
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• Show that the density contrast of an overdensity, once it has reached virial equilibrium, is

ρvir/ρ0 ≈ 150 (13.4.2)

13.5 The Press-Schechter mass function (hand-in)
In the lecture we saw how a few basic assumptions lead to a simple analytical formula that pro-
vides a remarkably good description of the mass function of bound structures in the Universe:

1. The Universe “initially” (i.e. shortly after the epoch of reionization) consists of particles
that are distributed randomly. The variance on the mass within a given volume V is, in
this case,

Σ2
V = σ2V (13.5.1)

where σ2 is the variance per unit volume.

2. The distribution of overdensities P(∆,V) is Gaussian with variance given by (13.5.1)

3. The fluctuations are initially small and grow linearly until they reach a critical value, Σcrit,
at which point they immediately collapse and virialize.

These assumptions lead to a mass function for bound fluctuations of the form

dN
dM
∝ M−3/2 exp(−M/M?) (13.5.2)

where M? ∝ a2 for scale factor a.
A more general result may be obtained by relaxing the assumption (13.5.1).

• Suppose that the variance follows a relation of the form

Σ2
V = σ2V2α (13.5.3)

Then, following the same reasoning that led to (13.5.2) (see the lecture viewgraphs), show
that the more general mass function has the form

dN
dM
∝ M−1−α exp

(
−

[ M
M?

]2(1−α))
(13.5.4)

with
M? ∝ a1/(1−α) (13.5.5)

The relation
d
dξ

erfc
(
aξb

)
= −

2ab exp
(
−a2ξ2b

)
ξb−1

√
π

(13.5.6)

might be useful.
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Werkcollege, Cosmology 2016/2017, Week 14
These are the exercises and hand-in assignment for the 14th week of the course Cosmology.
The hand-in assignment for this week is Problem 14.4 below.

14.1 Decaying potentials
We have seen in earlier lectures that small density perturbations in a Universe dominated by
pressure-less dark matter grow linearly with the scale factor, i.e.,

δρ

ρ
∝ a (14.1.1)

Here we examine the evolution of perturbations of the underlying potential, Ψ. Let us assume
for simplicity that the perturbations are spherically symmetric.

• Suppose that a test particle is located at the outer “boundary” of a perturbation with co-
moving radius r. Use the classical definition of the gravitational potential to show that, in
the linear regime, the perturbation of the potential δΨ remains constant as the scale factor
increases.

• Also show that, if the perturbations grow more slowly than a, the perturbation of the
potential will decay as the scale factor increases.

14.2 Newtonian equivalence of metric perturbations
(From Dodelson, Exercise 3, Chapter 4)

The metric for a particle travelling in the presence of a gravitational field is gµν = ηµν + hµν
where h00 = −2φ where φ is the Newtonian gravitational potential; hi0 = 0 and hi j = −2φδi j:

gµν =


−1 − 2φ 0 0 0

0 1 − 2φ 0 0
0 0 1 − 2φ 0
0 0 0 1 − 2φ

 (14.2.1)

• Show that Γi
00 = δi j∂φ/∂x j

• Show that the space components of the geodesic equation lead to d2xi/dt2 = −δi jdφ/dx j

in agreement with Newtonian theory. Use the fact that the particle is non-relativistic so
P0 � Pi.
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14.3 Four-momentum of photons in perturbed FRW metric
We adopt the perturbed version of the FRW metric as follows:

gµν =


−1 − 2Ψ(x, t) 0 0 0

0 a2[1 + 2Φ(x, t)] 0 0
0 0 a2[1 + 2Φ(x, t)] 0
0 0 0 a2[1 + 2Φ(x, t)]

 (14.3.1)

In the lecture we found that, to first order, the 0th component of the energy-momentum four-
vector can be written as

P0 ' p(1 − Ψ) (14.3.2)

where
p ≡ gi jPiP j (14.3.3)

• Now show that the other components of the momentum four-vector can be written as

Pi ' pp̂i 1 − Φ

a
(14.3.4)

where p̂ is the unit vector parallel to p.
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14.4 The momentum time derivative
We have expanded the left-hand side of the Boltzmann equation in terms of the partial deriva-
tives with respect to t, x and p as

d f
dt

=
∂ f
∂t

+
∂ f
∂xi ·

dxi

dt
+
∂ f
∂p

dp
dt

+
∂ f
∂p̂i ·

dp̂i

dt
(14.4.1)

Using the definitions of p and p̂, and keeping only first-order terms, we saw how this reduces to

d f
dt

=
∂ f
∂t

+
p̂i

a
·
∂ f
∂xi +

∂ f
∂p

dp
dt

(14.4.2)

The momentum term is non-trivial and requires a bit more work. So let’s get started! First, we
use the 0th component of the geodesic equation:

d2x0

dλ2 = −Γ0
αβ

dxα

dλ
dxβ

dλ
(14.4.3)

• Show that, in first instance, Eq. (14.4.3) can be written as

d
dt

[
p(1 − Ψ)

]
= −Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.4)

(i.e., Eq. 4.23 in Dodelson’s book). Hint: as usual, keep only first order terms (linear in
Ψ)!

• Next, expand out the time derivative on the left-hand side and show that this leads to

dp
dt

(1 − Ψ) = p
dΨ

dt
− Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.5)

(i.e. Eq. 4.24 in the book)

• Now, multiply by (1 + Ψ) to find Eq. (4.25):

dp
dt

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
− Γ0

αβ

PαPβ

p
(1 + 2Ψ) (14.4.6)

• Finally, evaluate the Christoffel symbol and show that

dp
dt

= −p
(
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

)
(14.4.7)

Hint: See p. 91–92 in Dodelson’s book.

We have now finished manipulating the left-hand side of the Boltzmann equation for photons:

d f
dt

=
∂ f
∂t

+
p̂i

a
·
∂ f
∂xi − p

∂ f
∂p

(
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

)
(14.4.8)
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14.5 First order terms of the Boltzmann equation for photons
• Demonstrate that the first-order terms in the left-hand side of the Boltzmann equation for

photons (Equation (4.40) in Dodelson’s book),

d f
dt

∣∣∣∣∣
1

= −p
∂

∂t

(
∂ f (0)

∂p
Θ

)
− p

p̂i

a
∂Θ

∂xi

(
∂ f (0)

∂p

)
+ HpΘ

∂

∂p

(
p
∂ f (0)

∂p

)
− p

∂ f (0)

∂p

[
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.1)

follow from expression (14.4.8), combined with the perturbed expansion of the photon
distribution,

f = f (0) − p
∂ f (0)

∂p
Θ (14.5.2)

• The next equation in the book, (4.41), says that the first of these terms can be written as

−p
∂

∂t

(
∂ f (0)

∂p
Θ

)
= −p

∂ f (0)

∂p
∂Θ

∂t
− pΘ

dT
dt
∂2 f (0)

∂T∂p
(14.5.3)

= −p
∂ f (0)

∂p
∂Θ

∂t
+ pΘ

dT/dt
T

∂

∂p

(
p
∂ f (0)

∂p

)
(14.5.4)

Show that the second term in Eq. (14.5.4) does indeed cancel the third term in Eq. (14.5.1)
so that the first-order terms of the left-hand side of the Boltzmann equation for photons
become

d f
dt

∣∣∣∣∣
1

= −p
∂ f (0)

∂p

[
∂Θ

∂t
+

p̂i

a
∂Θ

∂xi +
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.5)

14.6 Exercise 5, Chapter 4
Suppose we started chapter 4 by writing

d f
dλ

= C′ (14.6.1)

Change from this form to the one in Eq. (4.1) (with d f /dt on the left). How is the collision
term here, C′ related to C in Eq. (4.1)? Argue that the first-order perturbations in the factor re-
lating the two collision terms can be dropped since the collision terms themselves are first-order.
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14.7 The Einstein tensor in the perturbed FRW metric
To calculate the perturbations of the metric, Ψ and Φ, given the inhomogeneities in the distri-
bution of matter and radiation, we need Einstein’s field equations:

Gµν = 8πGTµν (14.7.1)

with the Einstein tensor given by

Gµν ≡ Rµν −
1
2

gµνR (14.7.2)

Specifically, we choose the (0, 0) component, with

G0
0 = g0iGi0 = (−1 + 2Ψ)R00 −

R

2
(14.7.3)

for Ricci tensor
Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα (14.7.4)

and Ricci scalar R = gµνRµν.
To calculate R, we need all elements of Rµν and thus the complete set of Christoffel symbols.

Here, we calculate a few of them.

• Show the following relations (as usual, to first order in the perturbations of the metric):

Γ0
00 ' Ψ,0 (14.7.5)

Γ0
i0 ' ikiΨ̃ (14.7.6)

Γ0
i j ' δi ja2 [

H + 2H(Φ − Ψ) + Φ,0
]

(14.7.7)

where the tilde denotes the transformation to Fourier space.
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Werkcollege, Cosmology 2017/2016, Week 15
These are the exercises for the 15th week of the course Cosmology. The hand-in assignment for
this week is Problem 15.3 below.

15.1 Momenta of the photon perturbations
Show that ∫ 1

−1
dµµ2Θ(µ) =

2
3

Θ0 −
4
3

Θ2 (15.1.1)

15.2 From inhomogeneities to anisotropies (I)
In this exercise we fill in some of the details in the calculation of anisotropies in the observed
temperature distribution on the sky from the inhomogeneities around recombination.

We start, once again, from the Boltzmann equation for photons:

Θ̇ + ikµΘ = −Φ̇ − ikµΨ − τ̇
[
Θ0 − Θ + µvb

]
(15.2.1)

We are now, of course, interested in the high-order moments Θl that correspond to the (small)
variations in the CMB temperature observed today, from our viewpoint at η = η0. We start by
subtracting τ̇Θ from both sides:

Θ̇ + ikµΘ − τ̇Θ = −Φ̇ − ikµΨ − τ̇
[
Θ0 − Θ + µvb

]
− τ̇Θ (15.2.2)

Θ̇ + (ikµ − τ̇)Θ = −Φ̇ − ikµΨ − τ̇
[
Θ0 + µvb

]
(15.2.3)

• Verify that the left-hand side can be rewritten as

e−ikµη+τ d
dη

[
Θeikµη−τ

]
= Θ̇ + (ikµ − τ̇)Θ (15.2.4)

We define the right-hand side as the source function (borrowing terminology from the theory of
radiative transfer in stellar atmospheres, which shares many aspects with this calculation),

S̃ ≡ −Φ̇ − ikµΨ − τ̇
[
Θ0 + µvb

]
(15.2.5)

• Then show that the perturbations at conformal time η0 are related to those at ηinit as

Θ(η0) = Θ(ηinit)eikµηinit−τe−ikµη0+τ + e−ikµη0+τ

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.6)

and, if η0 is today and ηinit is long before recombination

Θ(η0) '
∫ η0

ηinit

dηS̃ eikµ(η−η0)−τ(η) (15.2.7)
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15.3 From inhomogeneities to anisotropies (II)
We now need to calculate the multipole moments, defined as

Θl ≡
1

(−i)l

∫ 1

−1

dµ
2
Pl(µ)Θ(µ, η0) (15.3.1)

with Θ(µ, η0) given by

Θ(µ, η0) =

∫ η0

0
dηS̃ eikµ(η−η0)−τ(η) (15.3.2)

If S̃ did not depend on µ, this would be easy since∫ 1

−1

dµ
2
Pl(µ)eikµ(η−η0) =

1
(−i)l jl[k(η − η0)] (15.3.3)

where jl is the spherical Bessel function of order l. So let us split S̃ into two parts,

S̃ 1 ≡ −Φ̇ − τ̇Θ0 (15.3.4)
S̃ 2 ≡ −µ(ikΨ + τ̇vb) (15.3.5)

where S̃ 2 depends on µ and S̃ 1 does not.

• Evaluate the part of Θl involving S̃ 1 (call it Θl,1) and show that

Θl,1 = (−1)l
∫ η0

0
dηe−τ

(
−Φ̇ − τ̇Θ0

)
jl[k(η − η0)] (15.3.6)

Next, we make use of the fact that S̃ 2 appears multiplied by eikµ(η−η0).

• Demonstrate that µ, when appearing in this context, can be replaced by

µ→
1
ik

d
dη

(15.3.7)

• Show that the integral involving S̃ 2 evaluates to∫ η0

0
dηS̃ 2eikµ(η−η0)−τ(η) = Const −

∫ η0

0
dη eikµ(η−η0) d

dη

[
e−τ(η)

(
−Ψ +

iτ̇vb

k

)]
(15.3.8)

where Const is independent of µ (so irrelevant when computing the Θl). Use that τ(0) � 1
so that e−τ(0) ' 0. In case you forgot, here is the formula for integrating by parts:∫

u(x)v′(x)dx = u(x)v(x) −
∫

v(x)u′(x)dx (15.3.9)

• Then show that the contribution of S̃ 2 to the multipole moments is

Θl,2 = (−1)l
∫ η0

0
dη

d
dη

[
e−τ(η)

(
Ψ −

iτ̇vb

k

)]
jl[k(η − η0)] (15.3.10)
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• Finally, introducing the visibility function g(η) = −τ̇e−τ, verify that the following two
forms of the source function S are equivalent:

S (k, η) = e−τ(−Φ̇ − τ̇Θ0) +
d
dη

[
e−τ(η)

(
Ψ −

iτ̇vb

k

)]
(15.3.11)

= g(η)[Θ0 + Ψ] +
d
dη

(
ivbg(η)

k

)
+ e−τ

[
Ψ̇(k, η) − Φ̇(k, η)

]
(15.3.12)

The latter form shows more clearly that the observed CMB anisotropies contain terms
of three types: 1) The monopole of the temperature perturbations combined with met-
ric perturbations around the recombination, 2) The bulk velocity (which is coupled to
the temperature dipole), also around recombination, 3) Temporal variations in the metric
perturbations (i.e., the potential) along the entire line-of-sight.
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Solutions, Cosmology 2016/2017, Week 4

4.1 Fλ and Fν

If we look at a small part of the spectrum dλ, then the flux is

dF = Fλdλ (4.1.13)

Similarly,
dF = Fνdν (4.1.14)

so
Fλdλ = Fνdν (4.1.15)

Fν

Fλ

=
dλ
dν

(4.1.16)

Using
λ = c/ν (4.1.17)

we have
dλ
dν

= −
c
ν2 (4.1.18)

so
Fν

Fλ

=
c
ν2 =

λ2

c
(4.1.19)

as desired (Fν and Fλ must both be positive, of course).

4.2 Flux of astronomical objects
1. For λ = 5500 Å = 5500 × 10−10 m and T = 9900 K we get Iλ = 1.81 × 1014 W m−2 m−1

sr−1.

2. Multiply Iλ by ∆λV = 900 × 10−10 m⇒ IV = 1.63 × 107 W m−2 sr−1

3. There are (at least) two ways to do this:

a. V-band luminosity of Sirius: LV = 4πR2(πIV) = 9.55 × 1026 W (factor πIV comes
from integrating IV over angles from 0 to π/2 with respect to the normal: PV =∫ π/2

0
2π sin θ cos θIVdθ = πIV). Then the flux measured at Earth = FV = LV

4πD2 =

1.18 × 10−8 W m−2.

b. Since intensity is distance independent, we can also obtain FV by integrating over
the disk of Sirius as seen from Earth: FV = IVΩ, where Ω = π(R/D)2 (we have
assumed that IV is constant across the surface, as it will be for a pure black-body).
This again yields FV = 1.18 × 10−8 W m−2.

4. Number of photons per square meter: NV = FV/EV where EV is the energy of a V-band
photon = hνV = hc/λV . We get NV = 3.27 × 1010 m−2 s−1. Number of photons entering
HST aperture: multiply by π(1.2m)2 ⇒ 1.48 × 1011 s−1.
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4.3 Flux, Magnitude and Surface Brightness
1. Since Vega has mV = 0, we have

mV(1 Jy) = −2.5 log10
1 Jy
FVega

= 8.9 (4.3.20)

2. From the definition of magnitudes,

m1 − m2 = −2.5 log10(F1/F2) (4.3.21)

we have
F1/F2 = 10−0.4×(m1−m2) (4.3.22)

so again, using Vega as reference, we have

F(m = 6) = FVega × 10−0.4×6 = 1.43 × 10−25 W m−2 Hz−1 ≈ 14 Jy (4.3.23)

3. The flux received from a 6th magnitude star, relative to one square arcsecond of sky
background, is

F6mag/Fbkg = 10−0.4×(6−22) = 2.5 × 106 (4.3.24)

We thus need an area of 2.51×106 arcsec2 = 698 arcmin2 (R = 15 arcmin, similar to full
Moon or Sun)
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Solutions, Cosmology 2015/2016, Week 5

5.1 Distance and distance modulus
Can be shown in a couple of ways.
1) The distance modulus is

m − M = 5 log D/10 pc

So for distances D1 and D2, the distance moduli are

(m − M)i = 5 log Di/10pc

and the difference is
(m − M)1 − (m − M)2 = 5 log D1/D2

so if (m − M)1 − (m − M)2 = 0.1, then the ratio D1/D2 ≈ 1.05, so a 5% error on the distance.
2) We can also use standard error propagation:

δ(m − M) =
∂(5 log D/10pc)

∂D
δD

=
5

ln 10
δD
D

Hence, δD/D = δ(m − M) 1
5 ln 10 ≈ 0.5δ(m − M)

5.2 Moving cluster method

1. Distance from moving cluster method: D = vr tan θ
µ

. Insert vr = 40 km s−1 and µ = 0.110′′

yr−1 yields D = 44.4 pc.

2. See above - min dist Dmin = sin 30◦D = 0.5D = 22.2 pc.

3. Closest passage: Distance travelled = Dc = D cos θ. Time Tc = Dc/v = D cos θ/v. Space
velocity v = vt/ sin θ = Dµ/ sin θ. Then Tc = (D cos θ)/(Dµ/ sin θ) = cos θ sin θ/µ =

8.1×105 years ago.

4. Fading by 1 magnitude → distance increase by factor
√

2.512 = 1.585 to D′ = 70.4
pc. ∆X = D′ cos θ′ − D cos θ. ∆T ′ = ∆X/v = (D′ cos θ′ − D cos θ)/(Dµ/ sin θ) =

(1.585D cos θ′ − D cos θ)/(Dµ/ sin θ) = sin θ(1.585 cos θ′ − cos θ)/µ. We have sin θ′ =

Dmin/D′ = 0.5D/1.585D = 0.315, i.e. ∆T ′ = 6.0 × 105 years.
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5.3 Cepheids
1. From the parallax, the distance to δ Cep = 1/3.8 × 10−3 = 263 pc

This gives an absolute magnitude MV = 3.8 − (5 log10 d − 5) = −3.3
Using δ Cep to set the absolute zero-point of the period-luminosity relation, we find
−3.3 = −2.5 × 0.73 + ZV , i.e., ZV = −1.47, i.e. −3.3 = −2.5 log10 P − 1.47.
Compare this with the zero-point for the LMC P-L relation to find the distance modulus
m − M = 17.0 − (−1.47) = 18.47. This gives the distance, D = 49 kpc.

2. The extinction corrected magnitude is V0 = 27.1 − 0.1 = 27.0.
From the P-L relation, we get MV = −2.5 log10 P − 1.47 = −3.97
Distance modulus (m − M)0 = 27.0 − (−3.97) = 31.0 so D = 15.8 Mpc

5.4 Baade-Wesselink method

In the sketch above, Vr is the expansion velocity of the stellar surface while Vlos is the component
of that velocity directed towards the observer, Vlos = Vr cos θ. The observer will see a “ring”
with surface area da = 2π sin θ cos θdθ and intensity I(θ) expanding at Vlos(θ). The mean line-
of-sight velocity integrated over all θ and weighted by I(θ) is then

〈Vlos〉 =

∫
I(θ) Vlos(θ) da∫

I(θ) da
=

∫ π/2

0
I(θ)Vr cos θ 2π sin θ cos θdθ∫ π/2

0
I(θ)2π sin θ cos θ dθ

= Vr

∫ π/2

0
I(θ) cos2 θ sin θ dθ∫ π/2

0
I(θ) sin θ cos θ dθ

For constant I(θ),

〈Vlos〉/Vr =

∫ π/2

0
cos2 θ sin θ dθ∫ π/2

0
sin θ cos θ dθ

Now substitute U(x) = cos x and U′(x) = − sin x so that

∫ π/2

0
cos2 θ sin θ dθ = −

∫ π/2

0
U2(θ)U′(θ) dθ = −

∫ U(π/2)

U(0)
x2 dx =

∫ 0

1
x2 dx =

1
3

Similarly, ∫ π/2

0
sin θ cos θ dθ =

1
2
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so
〈Vlos〉/Vr =

3
2

For I(θ) = I(0)(0.4 + 0.6 cos θ):

〈Vlos〉/Vr =

∫ π/2

0
(0.4 + 0.6 cos θ) cos2 θ sin θ dθ∫ π/2

0
(0.4 + 0.6 cos θ) cos θ sin θ dθ

Making substitutions similar to those above, we get

〈Vlos〉/Vr =
24
17

5.5 K-corrections
1. K-correction in wavelength units :

K = 2.5 log10

∫
f (λ)S (λ)dλ∫

f [λ/(1 + z)]S (λ)dλ
+ 2.5 log10(1 + z)

This comes from

K = 2.5 log10

∫ λ2

λ1
f (λ)S (λ)dλ∫ λ2/(1+z)

λ1/(1+z)
f (λ′)S [λ′(1 + z)]dλ′

and
λ′ = λ/(1 + z)

dλ′ = dλ/(1 + z)

that is

K = 2.5 log10

∫ λ2

λ1
f (λ)S (λ)dλ∫ λ2

λ1
f [λ/(1 + z)]S (λ)(1 + z)−1dλ

= 2.5 log10

∫ λ2

λ1
f (λ)S (λ)dλ∫ λ2

λ1
f [λ/(1 + z)]S (λ)dλ

+ 2.5 log10(1 + z)

2. In frequency units:

K = 2.5 log10

∫ ν2

ν1
f (ν)S (ν)dν∫ ν2(1+z)

ν1(1+z)
f (ν′)S [ν′/(1 + z)]dν′

Here, we have
ν′ = ν(1 + z)

dν′ = dν(1 + z)
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so that

K = 2.5 log10

∫ ν2

ν1
f (ν)S (ν)dν∫ ν2(1+z)

ν1(1+z)
f (ν′)S [ν′/(1 + z)]dν′

= 2.5 log10

∫ ν2

ν1
f (ν)S (ν)dν∫ ν2

ν1
f [ν(1 + z)]S (ν)dν′

(1 + z)dν

= 2.5 log10

∫ ν2

ν1
f (ν)S (ν)dν∫ ν2

ν1
f [ν(1 + z)]S (ν)dν′

dν − 2.5 log10(1 + z)

3. For S (λ) ∝ λβ and assuming the filter transmission curve is a box function, we get

K = 2.5 log10

∫ λ2

λ1
λβdλ∫ λ2

λ1
[λ/(1 + z)]βdλ

+ 2.5 log10(1 + z)

= 2.5 log10

(β + 1)−1
(
λ

1+β
2 − λ

1+β
1

)
(β + 1)−1(1 + z)−β

(
λ

1+β
2 − λ

1+β
1

) + 2.5 log10(1 + z)

= 2.5 log10(1 + z)β + 2.5 log10(1 + z)
= 2.5 log10(1 + z)β+1
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Solutions, Cosmology 2016/2017, Week 6

6.1 Mass distribution in the Milky Way
a. Circular motion:

vc =

√
GM

R
(6.1.1)

so

M =
v2

cR
G

(6.1.2)

The mass within R is also

M = 4π
∫ R

0
r2ρ(r)dr (6.1.3)

Differentiating, we find
dM
dR

= 4πR2ρ(R) =
v2

c

G
(6.1.4)

since vc = const and hence

ρ(R) =
v2

c

4πG
R−2 (6.1.5)

b. We just need to fill in the numbers: vc = 200×103 m/s, R0 = 8 kpc = 2.46×1020 m. Then
ρ = 7.9 × 10−22 kg/m3 = 0.012 M� pc−3

c. At z = 0, we have ρd = 0.08 M� pc−3. To find the height where ρd = ρh:

0.012 = 0.08e−z/zscl (6.1.6)

i.e.
z = −zscl ln(0.012/0.08) = 580 pc (6.1.7)

6.2 Two-body relaxation
a. The potential energy during the encounter is

U(r) = −
Gm2

r
(6.2.1)

while the kinetic energy is

T =
1
2

mV2 (6.2.2)

Equating the two,
Gm2

r
=

1
2

mV2 (6.2.3)

so
β =

2Gm
v2
‖

(6.2.4)

b. We find β = 2.65×1012 m. For stellar density n and velocities V , the number of encounters
within a radius β in time t is

nenc = nπβ2Vt (6.2.5)
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Inserting β from above,

nenc = nπ
(
2Gm
V2

)2

Vt (6.2.6)

= nπ4G2m2V−3t (6.2.7)

or

tenc =
V3

4πG2nm2 (6.2.8)

For V = 10 km/s, n = 0.1 pc and m = 1M�, we find tenc = 1.3 × 1021s or 4.1 × 1013 years.
So ∼ 1000× the age of the Sun.

c. The acceleration depends on where exactly the particle is with respect to the deflecting
mass. If l = v‖t is the distance from the closest encounter, then the total acceleration of
the particle is

a =
Gm
r2 =

Gm
β2 + l2 (6.2.9)

The component of this perpendicular to v‖ is

a⊥ = a
β

r
=

Gm
β2 + v2

‖
t2

β√
β2 + v2

‖
t2

(6.2.10)

=
Gmβ

(β2 + v2
‖
t2)3/2

(6.2.11)

The total velocity change is found by integrating over all l, i.e.

v⊥ =

∫ ∞

−∞

a⊥dt =

∫ ∞

−∞

Gmβ
(β2 + v2

‖
t2)3/2

dt (6.2.12)

= 2
Gm
v‖β

(6.2.13)

The integral (6.2.12) above may evaluated using Bronshtein et al. (2004), Handbook of
Mathematics, integral #242, p. 1032:∫

dx

X
√

X
=

2(2ax + b)

∆
√

X
(6.2.14)

where X = ax2 + bx + c and ∆ = 4ac − b2. In our case, a = v2
‖
, b = 0 and c = β2. Then∫

dt
(β2 + v2

‖
t2)3/2

= 2
2v2
‖
t

4v2
‖
β2

√
v2
‖
t2 + β2

(6.2.15)

For limits −∞ and +∞, we get∫ ∞

−∞

dt
(β2 + v2

‖
t2)3/2

=

[
t

β2v |t|

]∞
−∞

(6.2.16)

=
2
β2v‖

(6.2.17)

Multiplying by Gmβ, we then have

v⊥ =

∫ ∞

−∞

a⊥dt =

∫ ∞

−∞

Gmβ
(β2 + v2

‖
t2)3/2

dt =
2Gm
βv‖

(6.2.18)
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d. This follows straight forwardly by integrating over all β

dV2 =

∫ βmax

βmin

(v⊥)2d2Nenc (6.2.19)

=

∫ βmax

βmin

(
2

Gm
βV

)2

2πβnV dβ dt (6.2.20)

=
8πG2m2n

V
ln

(
βmax

βmin

)
dt (6.2.21)

e. Assume that the density n and relative velocities V are constant over time, we have∫ trelax

0
〈dV2〉dt =

8πG2m2n
V

ln Λtrelax = V2 (6.2.22)

i.e.

trelax =
V3

8πG2m2n ln Λ
(6.2.23)
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Solutions, Cosmology 2016/2017, Week 7

7.1 Rotation of “Spiral Nebulae”
1. Rotation period = 2π 5 × 60′′/(0.022′′yr−1) ≈ 86000 yr

2. Speed = 2π× 15 kpc / 86000 yr ≈ 1.1 pc/yr = 1.07 × 109 m/s = 3.6 c !

3. Proper motion on the sky = 0.022′′ yr−1. Absolute velocity = 100 km/s = 1.0 × 10−4 pc
yr−1.
Distance where 0.022′′ corresponds to 10−4 pc: 10−4 pc / D = tan 0.022′′ i.e. D ≈ 960 pc.
Well within Shapley’s Galaxy.

4. Plate scale = 30′′ mm−1. Shift = 15 × 0.022′′ = 0.33′′ ≈ 0.01 mm

7.2 Radial velocities and radiation pressure
As per assumption (1), masses are

M =
rpv2

G
=

raDv2

G
(7.2.24)

where rp is the physical radius, ra is the angular radius, D the distance and v the rotational
velocity.

According to assumption (4), the radiation pressure is distance-independent. The momen-
tum of a photon is

p = E/c (7.2.25)

for photon energy E. Hence, the radiation pressure from a star of magnitude 1 is

P =
L�

4π(1AU)2

1
1.2 × 1011c

(7.2.26)

and the radiation pressure from one square degree

P = 0.035 ×
L�

4π(1AU)2

1
1.2 × 1011c

(7.2.27)

= 2.92 × 10−13 L�
4πc(1AU)2 (7.2.28)

There are 2π(180/π)2 = 20626 square degrees in a hemisphere. If all the light came from one
point, along a line-of-sight perpendicular to the plane of a nebula, the pressure would then be

P = 6.0 × 10−9 L�
4πc(1AU)2 (7.2.29)

Since it is distributed over a hemisphere, the actual pressure is half that,

P = 3.0 × 10−9 L�
4πc(1AU)2 (7.2.30)

Hence, the force on the nebula is

F = P × πR2
p (7.2.31)

= 3.0 × 10−9 D2R2
aL�

4c(1AU)2 (7.2.32)
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where Rp and Ra are the “outer” physical and angular radii. Hence, the acceleration is

A = F/M = 3.0 × 10−9 D2R2
aL�

4c(1AU)2

G
raDv2 (7.2.33)

= 7.5 × 10−10 L�G
c(1AU)2

DR2
a

rav2 (7.2.34)

• For D = 4.4 × 1022 m, r = 150′′ = 7.27 × 10−4 rad, R = 210′′ = 1.02 × 10−3 rad, we get
A = 1.04 × 10−15 m/s2.

• Time to accelerate to 1000 km/s = 3 × 1013 years.

• Distance travelled:

D =

∫ t

0
v(τ)dτ =

∫ t

0
A τdτ =

1
2

A t2

Inserting t = 9.62 × 1020 s and A = 1.04 × 10−15 m/s2, we find D = 4.8 × 1026 m =

1.6 × 1010 pc. Leads to many evident inconsistencies.

The most obvious effect that has been ignored is, of course, gravity from the Milky Way.
This would counteract the acceleration from radiation pressure, although the exact gravitation
of the Milky Way was difficult to estimate in 1921 as the mass of the Milky Way was very
poorly constrained.

Also, it is clearly not realistic to assume that the Milky Way occupies half the sky, as seen
from a distant galaxy. This would further reduce the radiation pressure.

7.3 Hot gas in galaxy clusters
Velocity of particles in gas with temperature T :

vrms =

√
3kT
µ

(7.3.1)

i.e.

T =
v2

rmsµ

3k
=
σ2µ

k
(7.3.2)

vrms is the 3-D velocity dispersion, i.e. vrms = 3σ1D and µ is the mean molecular weight.
Inserting µ = 10−27 kg and vrms = 106 m s−1 yields T = 72×106 K and it is clear from the above
that T scales with σ2, i.e.

T = 72 × 106
(

σ1D

1000 km s−1

)2

K (7.3.3)
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Solutions, Cosmology 2016/2017, Week 12

12.1 Cosmological surface brightness dimming
The flux is

F(z) =
L

4πD2
L

=
L

4πD2(1 + z)2 (12.1.1)

for distance measure D, redshift z and luminosity L. The angular size is

θ(z) ∝
1

DA
∝

(z + 1)
D

(12.1.2)

and the solid angle is then

Ω(z) ∝
(1 + z)2

D2 (12.1.3)

We thus find the intensity scaling as

I(z) =
F(z)
Ω(z)

∝
L

4πD2(1 + z)2

D2

(1 + z)2 ∝
1

(1 + z)4 (12.1.4)

12.2 Cosmological distances
a. In general, we have

r =

∫ t1

t0

c
a(t)

dt (12.2.1)

and for Einstein-de Sitter:

a(t) =

(
3H0t

2

)2/3

(12.2.2)

Converting to an integral over redshift:

a(t) = (1 + z)−1 (12.2.3)

i.e.
z = 1/a(t) − 1 (12.2.4)

so
dz
dt

=
dz
da

da
dt

= −
1

a(t)2 ȧ(t) (12.2.5)

Let’s try to express ȧ in terms of z:

ȧ =
2
3

(
3H0

2

)2/3

t−1/3 (12.2.6)

ȧ2 =
4
9

(
3H0

2

)4/3

t−2/3 (12.2.7)

We have

a(t) =

(
3H0

2

)2/3

t2/3 (12.2.8)
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so

t−2/3 =

(
3H0

2

)2/3

a(t)−1 (12.2.9)

i.e.

ȧ2 =
4
9

(
3H0

2

)4/3 (
3H0

2

)2/3

a(t)−1 (12.2.10)

=
4
9

(
3H0

2

)4/3 (
3H0

2

)2/3

(1 + z) (12.2.11)

=
4
9

(
3H0

2

)2

(1 + z) (12.2.12)

= H2
0(1 + z) (12.2.13)

So now we can integrate over z:

r = −

∫ z

0

c
a(t)

a(t)2

ȧ(t)
dz = −c

∫ z

0

a(t)
ȧ(t)

dz (12.2.14)

= −c
∫ z

0

(1 + z)−1

H0(1 + z)1/2 dz (12.2.15)

= −
c

H0

∫ z

0
(1 + z)−3/2dz (12.2.16)

= −
c

H0

(
2 −

2
√

1 + z

)
(12.2.17)

= −2
c

H0

(
1 − (1 + z)−1/2

)
(12.2.18)

b.

DA = D/(1 + z) = r/(1 + z) (12.2.19)

= 2
c

H0

(
1 − (1 + z)−1/2

)
/(1 + z) (12.2.20)

= 2
c

H0

(
(1 + z)−1 − (1 + z)−3/2

)
(12.2.21)

This has extremum for
dDA

dz
= 0 (12.2.22)

i.e.

d
dz

(1 + z)−1 =
d
dz

(1 + z)−3/2 (12.2.23)

−(1 + z)−2 = −
3
2

(1 + z)−5/2 (12.2.24)

2
3

= (1 + z)−1/2 (12.2.25)

9
4

= (1 + z) (12.2.26)

9
4
− 1 =

5
4

= z (12.2.27)
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12.3 Sunyaev-Zeldovich effect
Rayleigh-Jeans approximation:

Iν =
2ν2kT

c2 (12.3.1)

The energy of each photon increases by ∆Eν/Eν = y, equivalently ∆ν/ν = y. We first convince
ourselves that a constant fractional increase in the frequency of each photon simply shifts the
spectral energy distribution horizontally:

Consider n photons per unit time in the frequency interval δν0 at frequency ν0. The scattering
process does not change the number of photons. Before shifting, the photons carry an energy
per unit frequency interval of

δE/δν = δE0/δν0 = nhν0/δν0 (12.3.2)

After shifting by factor (1 + y), the interval is mapped onto

δν′ = (1 + y)δν0 (12.3.3)

at frequency ν′ = (1 + y)ν0, and the energy is δE′ = nhν′. The energy per unit frequency is now

δE′/δν′ = δE′/δν′ (12.3.4)
= nhν′/δν′ (12.3.5)

=
nh(1 + y)ν0

(1 + y)δν0
(12.3.6)

= δE0/δν0 (12.3.7)

Hence, the energy per unit frequency (per unit time, i.e. the specific intensity, Iν) remains un-
changed for a fixed point on the spectral energy distribution - the curve simply shifts horizon-
tally in frequency space.

Now, for brevity define α = 2kT/c2:

Iν = αν2 (12.3.8)

The slope of the curve is
dIν/dν = 2αν (12.3.9)

If the curve is shifted by ∆ν, the change in intensity at fixed ν is then (see sketch below)

∆Iν = −(dIν/dν)∆ν = −2αν∆ν (12.3.10)

Dividing through by Iν:

∆Iν/Iν = −2αν∆ν/(αν2) = −2∆ν/ν = −2y (12.3.11)
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Solutions, Cosmology 2016/2017, Week 13

13.1 Gravitational microlensing
• We require

θE > θsrc (13.1.1)

where θsrc is the radius of the source.

4GML

c2

(
DLS

DSDL

)
> (Rsrc/DS)2 (13.1.2)

ML >
R2

srcc
2

4G

(
DL

DLSDS

)
(13.1.3)

For Rsrc = R� = 7 × 108 m, DL = 10 kpc, DLS = 40 kpc, DS = 50 kpc we get ML =

2.65 × 1022 kg = 1.3 × 10−8M� (see also Paczyński 1986).

• For a shell of density ρ and thickness dr, the mass surface density is

dσM = ρdr (13.1.4)

and the surface density of lenses (per unit area) is

dσL =
ρ

ML
dr (13.1.5)

For shell radius r, the surface density of lenses per unit solid angle is

dΣL = r2dσL (13.1.6)

The optical depth is
dτ = πdΣLθ

2
E (13.1.7)

where

θ2
E =

4GML

c2

(
DS − r

DSr

)
(13.1.8)

The total optical depth for a system of radius R is then

τ =

∫ R

0

4GML

c2

(
DS − r

DSr

)
πr2ρ

ML
dr

=
4πGρ

c2

∫ R

0

(
DS − r

DS

)
r dr

=
4πGρ

c2

∫ R

0
(r − r2/DS )dr

=
4πGρ

c2

(
R2

2
−

R3

3DS

)
For DS = R, we then have

τ =

(
2π
3

) (Gρ
c2

)
D2

S (13.1.9)

(Paczyński 1996, Eq. 20)
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• For a uniform sphere of radius DS , we have from the virial theorem that

M = 5
σ2DS

G
(13.1.10)

that is
4
3
πρD3

S = 5
σ2DS

G
(13.1.11)

or

D2
S =

15
4

σ2

πρG
(13.1.12)

Using the expression for the optical depth, τ, derived before:

τ =

(
2π
3

) (Gρ
c2

) 15
4

σ2

πρG

=

(
5
2

) (
σ2

c2

)
(Paczyński 1996, Eq. 22)

13.2 The flatness problem
The critical density is defined at any epoch as

ρc = 3H2/8πG = 3(ȧ/a)2/8πG (13.2.1)

so the density parameter ΩM is

ΩM = ρM/ρc =
8πGρM

3(ȧ/a)2 (13.2.2)

We have
ȧ = H0

[
Ω0(1/a − 1) + ΩΛ(a2 − 1) + 1

]1/2
(13.2.3)

and
ρM = ρ0a−3 = (3Ω0H2

0/8πG)a−3 (13.2.4)

so

ΩM =
8πG(3Ω0H2

0/8πG)a−3

3H2
0
[
Ω0(1/a − 1) + ΩΛ(a2 − 1) + 1

]
/a2

(13.2.5)

=
Ω0a−1[

Ω0(1/a − 1) + ΩΛ(a2 − 1) + 1
] (13.2.6)

=
Ω0

Ω0(1 − a) + ΩΛ(a3 − a) + a
(13.2.7)

(13.2.8)

We then see that for small a this reduces to

lim
a→0

ΩM = 1 (13.2.9)

or, equivalently,
lim
z→∞

ΩM = 1 (13.2.10)

At redshift z = 1000 we have a = 10−3 so that 1 −ΩM ≈ 3 × 10−9.

46



13.3 Parametric solutions to Friedman’s equation
In an earlier lecture we found that the Friedman equation can be written as

ȧ = H0

[
Ω0(1/a − 1) + ΩΛ(a2 − 1) + 1

]1/2
(13.3.1)

By assumption, we here have ΩΛ = 0 so

ȧ = H0 [Ω0(1/a − 1) + 1]1/2 (13.3.2)

We have to show that the parametric solutions indeed satisfy this relation. They are:

a(θ) =
Ω0

2(Ω0 − 1)
(1 − cos θ) (13.3.3)

t(θ) =
Ω0

2H0(Ω0 − 1)3/2 (θ − sin θ) (13.3.4)

Hence, we have

da =
da
dθ

dθ =
Ω0

2(Ω0 − 1)
sin θ dθ (13.3.5)

dt =
dt
dθ

dθ =
Ω0

2H0(Ω0 − 1)3/2 (1 − cos θ) dθ (13.3.6)

We then find

ȧ =

Ω0
2(Ω0−1) sin θ

Ω0
2H0(Ω0−1)3/2 (1 − cos θ)

= H0(Ω0 − 1)1/2 sin θ
1 − cos θ

(13.3.7)

Squaring Eq. (13.3.2), inserting Eq. (13.3.7) on the left-hand side and Eq. (13.3.3) on the right-
hand side, we find that the solution should satisfy

sin2 θ

(1 − cos θ)2 =
2

(1 − cos θ)
− 1 (13.3.8)

If we multiply by (1 − cos θ)2, we find

sin2 θ = 2(1 − cos θ) − (1 − cos θ)2 (13.3.9)
= 2 − 2 cos θ − 1 − cos2 θ + 2 cos θ (13.3.10)
= 1 − cos2 θ (13.3.11)

which is, of course a valid trigonometric identity. Hence, the solutions (13.3.3) and (13.3.4) do
indeed satisfy (13.3.2).

13.4 Tophat model
Virial equilibrium is reached once the density contrast has re-collapsed back to half its max-
imum size, avir = 1

2amax. This means that cos θ = 0 in Eq. (13.3.3), corresponding to θ =

π/2, 3π/2, . . .. The relevant solution here is θvir = 3π/2. At this point the background scale
factor is

a =

(
3H0tvir

2

)2/3

(13.4.1)

47



while
avir =

1
2

Ω0

Ω0 − 1
(13.4.2)

The density contrast is then

∆vir = (a/avir)3 (13.4.3)

=

(
3H0tvir

2

)2 (
1
2

Ω0

Ω0 − 1

)−3

(13.4.4)

=

3H0
Ω0

2H0(Ω0−1)3/2 (θvir − sin θvir)

2


2 (

1
2

Ω0

Ω0 − 1

)−3

(13.4.5)

=
9
2

Ω0(θvir − sin θvir)2 ≈ 150 (13.4.6)

(13.4.7)

since Ω0 = 1.

13.5 The Press-Schechter mass function
The derivation closely follows that given in the lecture slides for the case Σ2 = σ2V . This in
turns follows the original paper by Press & Schechter (1974; PS74), which may be consulted
for more in-depth discussion. Here we suppose that

Σ2 = σ2V2α (13.5.1)

The relative fluctuations per volume are then

Σ(V)/V =
√

V2ασ2/V = σVα−1 (13.5.2)

or, per mass (for mean density ρ, so that M(V) = ρV):

Σ(V)/M(V) =

√
V2ασ2

ρV
=
σ

ρ
Vα−1 (13.5.3)

For fractional difference between the mean mass 〈M(V)〉 and actual mass in a particular volume
M(V),

∆ ≡
M(V) − 〈M(V)〉
〈M(V)〉

(13.5.4)

the probability density function p(δ,V) is then a Gaussian with mean 0 and dispersion

∆? = Σ(V)/M(V) =
σ

ρ
Vα−1 (13.5.5)

As before, the probability that a volume V is bound by a2 is

P =
1
2

erfc
(

∆crita1
√

2∆?a2

)
(13.5.6)

but we now substitute the expression (13.5.5) so that

P =
1
2

erfc
(
ρ

σ

∆crita1
√

2a2

V1−α
)

(13.5.7)

=
1
2

erfc
(

1
σ

∆crita1
√

2a2

M1−αρα
)

(13.5.8)
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which is Eq. 18 in PS74. In general,

d
dξ

erfc
(
aξb

)
= −

2ab exp
(
−a2ξ2b

)
ξb−1

√
π

(13.5.9)

The differential probability distribution is then

dP
dM

=
1
2

2
σ
√
π

∆crita1
√

2a2

ρα(1 − α)M−α exp
(
−

1
σ2

∆2
crita

2
1

2a2
2

ρ2αM2−2α
)

(13.5.10)

and the number density is

dN
dM

= ρ1+α
1

(
a1

a2

)4
∆crit

σ

√
2/π(1 − α)M−α−1 exp

(
−

1
σ2

∆2
crita

2
1

2a2
2

ρ2αM2(1−α)
)

(13.5.11)

which is Eq. (19) in PS74, apart from the factor of two that PS74 introduce to account for the
underdensities. Eq. 13.5.11 is thus of the form

dN
dM
∝ M−1−α exp

(
−

[ M
M?

]2(1−α))
(13.5.12)

where M? ∝ a2/[2(1−α)]
2 = a1/(1−α)

2

49



Solutions, Cosmology 2016/2017, Week 14

14.1 Decaying potentials
Assume for simplicity that the perturbation is spherical. For a particle located at physical dis-
tance R from the center, the Newtonian potential is then (from the shell theorem)

Ψ ≡ −
GM

R
(14.1.1)

hence the part of this due to a perturbation of mass δM is

δΨ = −
GδM

R
(14.1.2)

In an expanding Universe, R ∝ a, so if the overdensities cannot grow then we immediately see
that

δΨ ∝ a−1 (14.1.3)

i.e., the perturbations of the potential δΨ decay as the Universe expands, as long as the pertur-
bations grow more slowly than a.

In the linear regime, we have
δρ

ρ
∝ a (14.1.4)

For a fixed co-moving distance r from the centre, M(r) ≈ const, while the physical distance is
R = ar. So we have

δM
M

=
δρ

ρ
∝ a (14.1.5)

so
δΨ = −

GδM
R
∝ −

Ga
ar

= const (14.1.6)

14.2 Newtonian equivalence of metric perturbations
• The general expression for the Christoffel symbol is

Γµαβ =
gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα
−
∂gαβ
∂xν

]
(14.2.1)

For Γi
00 we have

Γi
00 =

giν

2

[
∂g0ν

∂x0 +
∂g0ν

∂x0 −
∂g00

∂xν

]
(14.2.2)

Since the metric is diagonal, this is non-zero only for ν = i so we have

Γi
00 =

gii

2

[
∂g0i

∂x0 +
∂g0i

∂x0 −
∂g00

∂xi

]
(14.2.3)

=
1 + 2φ

2

[
0 + 0 −

∂(−1 − 2φ)
∂xi

]
(14.2.4)

=
1 + 2φ

2

[
2
∂φ

∂xi

]
(14.2.5)

= (1 + 2φ)
∂φ

∂xi (14.2.6)

'
∂φ

∂xi (14.2.7)
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where the last step follows by elimination of the second-order term φ ∂φ

∂xi .

• In addition to Γi
00 from above, we also need the other spatial Christoffel symbols:

Γk
i j =

gkν

2

[
∂giν

∂x j +
∂g jν

∂xi −
∂gi j

∂xν

]
(14.2.8)

=
gkk

2

[
∂gik

∂x j +
∂g jk

∂xi −
∂gi j

∂xk

]
(14.2.9)

These are non-zero only for i = j = k, in which case we get

Γi
ii =

gii

2

[
∂gii

∂xi +
∂gii

∂xi −
∂gii

∂xi

]
(14.2.10)

=
gii

2

[
∂gii

∂xi

]
(14.2.11)

=
1 − 2φ

2

[
∂(1 − 2φ)

∂xi

]
(14.2.12)

= −
∂φ

∂xi (14.2.13)

And

Γi
0 j = Γi

j0 =
gii

2

[
∂g0i

∂x j +
∂g ji

∂x0 −
∂g0 j

∂xi

]
(14.2.14)

=
gii

2

[
∂g ji

∂x0

]
(14.2.15)

Again, non-zero only for i = j, where we get

Γi
0i =

1 − 2φ
2

[
∂1 − 2φ
∂t

]
(14.2.16)

= −
∂φ

∂t
(14.2.17)

Then we can go on to look at the geodesic equation:

d2xi

dλ2 = −

[
Γi

00
dx0

dλ
dx0

dλ
+ Γi

0i
dx0

dλ
dxi

dλ
+ Γi

i0
dxi

dλ
dx0

dλ
+ Γi

ii
dxi

dλ
dxi

dλ

]
(14.2.18)

= −

[
∂φ

∂xi

dx0

dλ
dx0

dλ
−
∂φ

∂t
dx0

dλ
dxi

dλ
−
∂φ

∂t
dxi

dλ
dx0

dλ
−
∂φ

∂xi

dxi

dλ
dxi

dλ

]
(14.2.19)

= −

[
∂φ

∂xi P
0P0 −

∂φ

∂t
P0Pi −

∂φ

∂t
P0Pi −

∂φ

∂xi P
iPi

]
(14.2.20)

=
∂φ

∂xi

[
(Pi)2 − (P0)2

]
(14.2.21)

' −
∂φ

∂xi (P
0)2 (14.2.22)

(14.2.23)

On the left, we have

d2xi

dλ2 =
d

dλ
dxi

dλ
=

dPi

dλ
=

dPi

dt
dt
dλ

=
dPi

dt
P0 (14.2.24)
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Then we get

dPi

dt
P0 = −

∂φ

∂xi (P
0)2 (14.2.25)

dPi

dt
= −

∂φ

∂xi P
0 (14.2.26)

d
dt

(
m

dxi

dt

)
= m

d2xi

dt2 = −
∂φ

∂xi P
0 (14.2.27)

For a non-relativistic particle we have P0 = E = m(c2) + 1
2mv2, which is dominated by the

rest mass term, E ' m(c2). Thus m cancels out and we get

d2xi

dt2 = −
∂φ

∂xi (14.2.28)

which is what we wanted to show.

14.3 Four-momentum of photons in perturbed FRW metric
For the other Pi: we expand the gi j and get

p2 = gi jPiP j (14.3.1)

pi =
[
a2(1 + 2Φ)

]1/2
(Pi) (14.3.2)

Pi = pi
[
a2(1 + 2Φ)

]−1/2
(14.3.3)

≈
pi

a
(1 − Φ) (14.3.4)

= pp̂i 1 − Φ

a
(14.3.5)

14.4 The momentum time derivative
• We start from the geodesic equation,

d2xµ

dλ2 = −Γµαβ
dxα

dλ
dxβ

dλ
(14.4.1)

and use the definition of the four-momentum,

Pµ ≡
dxµ

dλ
(14.4.2)

The zeroth component of the geodesic eqn. is then

dP0

dλ
= −Γ0

αβPαPβ (14.4.3)

For the left-hand side, we have

dP0

dλ
=

dP0

dt
dt
dλ

=
dP0

dt
P0 (14.4.4)

= P0 d
dt

p(1 − Ψ) (14.4.5)
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so that
P0 d

dt
p(1 − Ψ) = −Γ0

αβPαPβ (14.4.6)

or

d
dt

p(1 − Ψ) = −Γ0
αβ

PαPβ

P0 (14.4.7)

= −Γ0
αβ

PαPβ

p(1 − Ψ)
(14.4.8)

= −Γ0
αβ

PαPβ

p
(1 + Ψ) (14.4.9)

which is Eq. (4.23), p. 91.

• Next, the left-hand side is expanded:

d
dt

p(1 − Ψ) =
d
dt

p − pΨ (14.4.10)

=
dp
dt
−

(
dp
dt

Ψ + p
dΨ

dt

)
(14.4.11)

=
dp
dt

(1 − Ψ) − p
dΨ

dt
(14.4.12)

Inserting this into Eq. (14.4.9), we get

dp
dt

(1 − Ψ) − p
dΨ

dt
= −Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.13)

or
dp
dt

(1 − Ψ) = p
dΨ

dt
− Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.14)

which is Eq. (4.24).

• Next, multiply both sides by (1 + Ψ) and continue dropping terms that are quadratic in Ψ:

dp
dt

(1 − Ψ)(1 + Ψ) = p
dΨ

dt
(1 + Ψ) − Γ0

αβ

PαPβ

p
(1 + Ψ)2 (14.4.15)

dp
dt

(1 − Ψ2) = p
dΨ

dt
(1 + Ψ) − Γ0

αβ

PαPβ

p
(1 + 2Ψ) (14.4.16)

dp
dt

= p
dΨ

dt
(1 + Ψ) − Γ0

αβ

PαPβ

p
(1 + 2Ψ) (14.4.17)

Express dΨ/dt in terms of partial derivatives:

dΨ

dt
=
∂Ψ

∂t
+
∂Ψ

∂xi

∂xi

∂t
(14.4.18)

where
∂xi

∂t
=

p̂i

a
(1 + Ψ − Φ) (14.4.19)

so
dΨ

dt
=
∂Ψ

∂t
+
∂Ψ

∂xi

p̂i

a
(1 + Ψ − Φ) (14.4.20)
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Inserting this in Eq. (14.4.17), we get

dp
dt

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ)
)

(1 + Ψ) − Γ0
αβ

PαPβ

p
(1 + 2Ψ) (14.4.21)

There are some more second-order terms to be gotten rid off:(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ)
)

(1 + Ψ) (14.4.22)

= Ψ

(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ)
)

+

(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ)
)

(14.4.23)

= Ψ
∂Ψ

∂t
+ Ψ

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ) +
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ) (14.4.24)

Removing terms involving Ψ2 or ΨΦ leaves:

= Ψ
∂Ψ

∂t
+ Ψ

p̂i

a
∂Ψ

∂xi +
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (1 + Ψ − Φ) (14.4.25)

But also the terms ∂Ψ/∂xi and ∂Ψ/∂t are first-order terms (i.e., non-zero only for per-
turbed solutions) so we can also remove terms involving Ψ∂Ψ/∂xi, Φ∂Ψ/∂xi, and Ψ∂Ψ/∂t,
which are then second-order:

=
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi (14.4.26)

We have now reduced Eq. (14.4.21) to

dp
dt

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
− Γ0

αβ

PαPβ

p
(1 + 2Ψ) (14.4.27)

which is Eq. (4.25).

• Now we need to evaluate the Christoffel symbol,

Γ0
αβ =

g00

2

[
∂gα0

∂xβ
+
∂gβ0

∂xα
−
∂gαβ
∂x0

]
(14.4.28)

with the metric gµν given by

gµν =


−1 − 2Ψ(x, t) 0 0 0

0 a2[1 + 2Φ(x, t)] 0 0
0 0 a2[1 + 2Φ(x, t)] 0
0 0 0 a2[1 + 2Φ(x, t)]

 (14.4.29)

Because of the symmetry in α and β, we can write the Christoffel symbol as

Γ0
αβ =

g00

2

[
2
∂gα0

∂xβ
−
∂gαβ
∂x0

]
(14.4.30)

and from Eq. (14.4.29) we have g00 = −1− 2Ψ(x, t), so g00 = −1 + 2Ψ(x, t). Furthermore,
x0 ≡ t, and therefore

Γ0
αβ =

−1 + 2Ψ

2

[
2
∂gα0

∂xβ
−
∂gαβ
∂t

]
(14.4.31)
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Going back to Eq. (14.4.27), we now include the factor PαPβ/p, and get

Γ0
αβ

PαPβ

p
=
−1 + 2Ψ

2

[
2
∂gα0

∂xβ
−
∂gαβ
∂t

]
PαPβ

p
(14.4.32)

We first concentrate on the second term,

−
∂gαβ
∂t

PαPβ

p
= −

∂g00

∂t
P0P0

p
−
∂gi j

∂t
PiP j

p
(14.4.33)

= 2
∂Ψ

∂t
P0P0

p
−
∂gi j

∂t
PiP j

p
(14.4.34)

Previously, (Eq. 4.14, p. 89) it was found that P0 = p/
√

1 + 2Ψ, so the first term is

∂Ψ

∂t
P0P0

p
=

∂Ψ

∂t
pp

p(1 + 2Ψ)
(14.4.35)

≈
∂Ψ

∂t
p(1 − 2Ψ) (14.4.36)

≈
∂Ψ

∂t
p (14.4.37)

where again the second-order term involving (∂Ψ/∂t)Ψ has been dropped. For the second
term we need the derivatives of the metric,

∂gi j

∂t
= δi j

∂

∂t
a2[1 + 2Φ] (14.4.38)

= δi j

(
2a2∂Φ

∂t
+ (1 + 2Φ)

∂a2

∂t

)
(14.4.39)

= δi j

(
2a2∂Φ

∂t
+ 2(1 + 2Φ)aȧ

)
(14.4.40)

= δi j

(
2a2∂Φ

∂t
+ 2a2(1 + 2Φ)

ȧ
a

)
(14.4.41)

= δi j

(
2a2∂Φ

∂t
+ 2a2(1 + 2Φ)H

)
(14.4.42)

= 2a2δi j

(
∂Φ

∂t
+ H(1 + 2Φ)

)
(14.4.43)

(14.4.44)

We can now fill these results back into Eq. (14.4.34), and get

−
∂gαβ
∂t

PαPβ

p
= 2

∂Ψ

∂t
p − 2a2δi j

(
∂Φ

∂t
+ H(1 + 2Φ)

)
PiP j

p
(14.4.45)

which is Eq. (4.28) in the book.

To eliminate the factor δi jPiP j/p, we use the result from (4.19),

Pi = pp̂i 1 − Φ

a
(14.4.46)

i.e.

δi j
PiP j

p
= p2(1 − 2Φ)/a2/p = p(1 − 2Φ)/a2 (14.4.47)
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We now go back to Eq. (14.4.32) and can write

Γ0
αβ

PαPβ

p
=
−1 + 2Ψ

2

[
2
∂gα0

∂xβ
−
∂gαβ
∂t

]
PαPβ

p
(14.4.48)

=
−1 + 2Ψ

2

[
2
∂gα0

∂xβ
PαPβ

p
+ 2

∂Ψ

∂t
p − 2a2

(
∂Φ

∂t
+ H(1 + 2Φ)

)
p(1 − 2Φ)/a2

]
(14.4.49)

=
−1 + 2Ψ

2

[
2
∂gα0

∂xβ
PαPβ

p
+ 2p

∂Ψ

∂t
− 2p

(
∂Φ

∂t
+ H(1 + 2Φ)

)
(1 − 2Φ)

]
(14.4.50)

Finally, we need to evaluate the sum

∂gα0

∂xβ
PαPβ

p
(14.4.51)

Because the metric is diagonal, this is non-zero only for α = 0, so that

∂gα0

∂xβ
PαPβ

p
=

∂g00

∂xβ
P0Pβ

p
(14.4.52)

= −2
∂Ψ

∂xβ
P0Pβ

p
(14.4.53)

= −2
∂Ψ

∂xβ
(1 − Ψ)Pβ (14.4.54)

= −2
∂Ψ

∂xβ
Pβ (14.4.55)

where, in the last step, we have again dropped the second-order term (∂Ψ/∂xβ)Ψ. Thus,
we get Eq. (4.29):

Γ0
αβ

PαPβ

p
=
−1 + 2Ψ

2

[
−4

∂Ψ

∂xβ
Pβ + 2p

∂Ψ

∂t
− 2p

(
∂Φ

∂t
+ H(1 + 2Φ)

)
(1 − 2Φ)

]
(14.4.56)

We can simplify this further, by noting that (1 + 2Φ)(1 − 2Φ) = 1 − 4Φ2 ≈ 1, and we can
drop the second-order term (∂Φ/∂t)Φ, so that

Γ0
αβ

PαPβ

p
=
−1 + 2Ψ

2

[
−4

∂Ψ

∂xβ
Pβ + 2p

∂Ψ

∂t
− 2p

(
∂Φ

∂t
+ H

)]
(14.4.57)

We now need to finish evaluating the sum in the first term:

∂Ψ

∂xβ
Pβ =

∂Ψ

∂t
P0 +

∂Ψ

∂xi Pi (14.4.58)

=
∂Ψ

∂t
p(1 − Ψ) +

∂Ψ

∂xi pp̂i 1 − Φ

a
(14.4.59)

=
∂Ψ

∂t
p +

∂Ψ

∂xi

pp̂i

a
(14.4.60)

(14.4.61)

Inserting it in Eq. (14.4.57), we get

Γ0
αβ

PαPβ

p
=
−1 + 2Ψ

2

[
−4

(
∂Ψ

∂t
p +

∂Ψ

∂xi

pp̂i

a

)
+ 2p

∂Ψ

∂t
− 2p

(
∂Φ

∂t
+ H

)]
(14.4.62)

= (−1 + 2Ψ)
[
−p

∂Ψ

∂t
− 2

∂Ψ

∂xi

pp̂i

a
− p

(
∂Φ

∂t
+ H

)]
(14.4.63)
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which is Eq. (4.30).

We can now insert this in Eq. (14.4.27),

dp
dt

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
− (−1 + 2Ψ)

[
−p

∂Ψ

∂t
− 2

∂Ψ

∂xi

pp̂i

a
− p

(
∂Φ

∂t
+ H

)]
(1 + 2Ψ)(14.4.64)

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
+ (1 − 2Ψ)(1 + 2Ψ)

[
−p

∂Ψ

∂t
− 2

∂Ψ

∂xi

pp̂i

a
− p

(
∂Φ

∂t
+ H

)]
(14.4.65)

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
− p

∂Ψ

∂t
− 2

∂Ψ

∂xi

pp̂i

a
− p

(
∂Φ

∂t
+ H

)
(14.4.66)

= p
∂Ψ

∂t
+

pp̂i

a
∂Ψ

∂xi − p
∂Ψ

∂t
− 2

∂Ψ

∂xi

pp̂i

a
− p

(
∂Φ

∂t
+ H

)
(14.4.67)

Simplifying further, we finally get

dp
dt

= −p
(
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

)
(14.4.68)

which is the desired Eq. (4.32).

14.5 First order terms of the Boltzmann equation for photons
• We have

d f
dt

=
∂ f
∂t

+
p̂i

a
∂ f
∂xi − p

∂ f
∂p

[
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.1)

and

f ≈ f (0) − p
∂ f (0)

∂p
Θ (14.5.2)

We insert Eq. (14.5.2) in Eq. (14.5.1) and get

d f
dt

=
∂

∂t

(
f (0) − p

∂ f (0)

∂p
Θ

)
+

p̂i

a
∂

∂xi

(
f (0) − p

∂ f (0)

∂p
Θ

)
− p

∂

∂p

(
f (0) − p

∂ f (0)

∂p
Θ

) [
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.3)

On the first line, we can eliminate the zero-order term ∂ f 0/∂t, on the second line the
derivative ∂ f 0/∂xi vanishes (since f (0) does not depend on xi), and the zero-order term
Hp∂ f 0/∂p (third line) can also be eliminated (since we are only interested in the first
order terms). The remaining terms are

d f
dt

∣∣∣∣∣
1

= −p
∂

∂t

(
∂ f (0)

∂p
Θ

)
− p

p̂i

a
∂

∂xi

(
∂ f (0)

∂p
Θ

)
− p

∂ f (0)

∂p

[
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
+ p

∂

∂p

(
p
∂ f (0)

∂p
Θ

) [
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.4)
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In the second term on the last line, the terms proportional to Θ∂Φ
∂t and Θ ∂Ψ

∂xi are second-
order and can be eliminated. Since f 0 does not depend on xi, the ∂

∂xi
∂ f (0)

∂p Θ term simplifies

to ∂ f (0)

∂p
∂Θ
∂xi Then we are left with:

d f
dt

∣∣∣∣∣
1

= p
∂

∂t

(
∂ f (0)

∂p
Θ

)
− p

p̂i

a
∂Θ

∂xi

(
∂ f (0)

∂p

)
− p

∂ f (0)

∂p

[
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
+ HpΘ

∂

∂p

(
p
∂ f (0)

∂p

)
(14.5.5)

This is Eq. (4.40) in the book.

• We are comparing

HpΘ
∂

∂p

(
p
∂ f (0)

∂p

)
(14.5.6)

and

pΘ
dT/dt

T
∂

∂p

(
p
∂ f (0)

∂p

)
(14.5.7)

From Eq. (4.38) in the book (that follows from looking at the zero-order terms) we have
that

dT/dt
T

= −
da/dt

a
= −

ȧ
a
≡ −H (14.5.8)

which gives the desired result.

14.6 Exercise 5, Chapter 4
Why the factor 1/p in front of the equation for the collision terms (Eq. 4.45 in the book)? This
is Exercise 5, p. 114: In GR, it would be more appropriate to write the derivative of f in terms
of the affine parameter, λ:

d f
dλ

= C′ (14.6.1)

whereas we use the time derivative explicitly (Eq. 4.1):

d f
dt

= C (14.6.2)

Using the implicit definition of λ via the four-momentum, we can go from one to the other using

d f
dλ

=
d f
dt

dt
dλ

=
d f
dt

P0 =
d f
dt

p(1 − Ψ) (14.6.3)

That is,
C′ = Cp(1 − Ψ) (14.6.4)

or, dropping the term CΨ since both factors are first-order terms (zero in equilibrium) and the
product therefore second-order:

C = C′/p (14.6.5)

This explains the factor 1/p.
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14.7 The Einstein tensor in the perturbed FRW metric
• We start with µ = ν = 0:

Γ0
00 =

1
2

g0α [
gα0,0 + gα0,0 − g00,α

]
(14.7.1)

Because the metric is diagonal, only terms the terms multiplied by g00 are non-zero. Since
Ψ is a small perturbation, we have

g00 = 1/g00 ∼ −1 + 2Ψ (14.7.2)

so

Γ0
00 =

−1 + 2Ψ

2
[
g00,0 + g00,0 − g00,0

]
(14.7.3)

=
−1 + 2Ψ

2
(g00,0) (14.7.4)

=
−1 + 2Ψ

2
∂(−1 − 2Ψ)

∂t
(14.7.5)

=
−1 + 2Ψ

2
(−2Ψ,0) (14.7.6)

≈ Ψ,0 (14.7.7)

where, in the last step, we have as usual dropped the second-order term ΨΨ,0.

• Then we go on to look at one of the two indices µ or ν being spatial, while the other
remains 0 (time). We thus evaluate

Γ0
µ0 =

1
2

g0α
[
gαµ,0 + gα0,µ − gµ0,α

]
(14.7.8)

(we could also have started with µ = 0 and ν spatial; because of the symmetry the result
is the same). Again, only the terms with α = 0 count, so

Γ0
i0 =

1
2

g00 [
g0i,0 + g00,i − gi0,0

]
(14.7.9)

=
−1 + 2Ψ

2
[
g0i,0 + g00,i − gi0,0

]
(14.7.10)

where i as usual refers to a spatial index. Because of the symmetry, the first and last terms
cancel so

Γ0
i0 =

−1 + 2Ψ

2
[
g00,i

]
(14.7.11)

=
−1 + 2Ψ

2
(−2Ψ,i) (14.7.12)

Eliminating again the second-order term ΨΨ,i, we get

Γ0
i0 = Γ0

0i = Ψ,i (14.7.13)

Finally, moving to Fourier space, the spatial derivatives are

Ψ̃,i = ikiΨ̃ (14.7.14)

where ki is the wave number corresponding to the component i.
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• Both indices spatial: As usual, terms with α , 0 are zero, so

Γ0
i j =

1
2

g00
[
g0i, j + g0 j,i − gi j,0

]
(14.7.15)

Here, the two first terms in the brackets are zero (because the metric is diagonal), and g00

is the same as in the other cases, so

Γ0
i j =

−1 + 2Ψ

2

[
−gi j,0

]
(14.7.16)

=
1 − 2Ψ

2

[
δi j
∂a2[1 + 2Φ]

∂t

]
(14.7.17)

=
1 − 2Ψ

2
δi j

[
2aȧ[1 + 2Φ] + 2a2Φ,0

]
(14.7.18)

= δi j(1 − 2Ψ)a2
[
aȧ/a2[1 + 2Φ] + Φ,0

]
(14.7.19)

= δi j(1 − 2Ψ)a2 [
H[1 + 2Φ] + Φ,0

]
(14.7.20)

= δi ja2 [
H[1 + 2Φ] + Φ,0 − 2ΨH[1 + 2Φ] − 2ΨΦ,0

]
(14.7.21)

≈ δi ja2 [
H[1 + 2Φ] + Φ,0 − 2ΨH

]
(14.7.22)

and finally
Γ0

i j = δi ja2 [
H + 2H(Φ − Ψ) + Φ,0

]
(14.7.23)

which is Eq. (5.6) in the book.
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Solutions, Cosmology 2016/2016, Week 15

15.1 Momenta of the photon perturbations
Show that ∫ 1

−1
dµµ2Θ(µ) =

2
3

Θ0 −
4
3

Θ2 (15.1.1)

The second moment (Θ2) is defined as

Θ2 = −
1
2

∫ 1

−1
dµ

3µ2 − 1
2

Θ(µ) (15.1.2)

= −
1
2

(∫ 1

−1
dµ

3
2
µ2Θ(µ) −

∫ 1

−1
dµ

1
2

Θ(µ)
)

(15.1.3)

= −
3
4

∫ 1

−1
dµµ2Θ(µ) +

1
4

∫ 1

−1
dµΘ(µ) (15.1.4)

4
3

Θ2 = −

∫ 1

−1
dµµ2Θ(µ) +

1
3

∫ 1

−1
dµΘ(µ) (15.1.5)

so we have ∫ 1

−1
dµµ2Θ(µ) =

1
3

∫ 1

−1
dµΘ(µ) −

4
3

Θ2 (15.1.6)

=
2
3

Θ0 −
4
3

Θ2 (15.1.7)

15.2 From inhomogeneities to anisotropies (I)
• This follows from straight forward evaluation, remembering that Θ also depends on η:

e−ikµη+τ d
dη

[
Θeikµη−τ

]
= e−ikµη+τ

[
Θ̇eikµη−τ + Θ(ikµ − τ̇)eikµη−τ

]
(15.2.1)

= Θ̇ + (ikµ − τ̇)Θ (15.2.2)

• We multiply both sides by eikµη−τ:

e−ikµη+τeikµη−τ d
dη

[
Θeikµη−τ

]
= S̃ eikµη−τ (15.2.3)

d
dη

[
Θeikµη−τ

]
= S̃ eikµη−τ (15.2.4)

and then integrate over η from ηinit to η0 (today):∫ η0

ηinit

dη
d
dη

[
Θeikµη−τ

]
=

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.5)

Θ(η0)eikµη0−τ − Θ(ηinit)eikµηinit−τ =

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.6)

Θ(η0)eikµη0−τ = Θ(ηinit)eikµηinit−τ +

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.7)
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Θ(η0) = Θ(ηinit)eikµηinit−τe−ikµη0+τ + e−ikµη0+τ

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.8)

At η0 = today, we have τ(η0) = 0 (per definition). Then

Θ(η0) = Θ(ηinit)eikµηinit−τe−ikµη0 + e−ikµη0

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.9)

= Θ(ηinit)eikµ(ηinit−η0)e−τ(ηinit) + e−ikµη0

∫ η0

ηinit

dηS̃ eikµη−τ (15.2.10)

Θ(η0) = Θ(ηinit)eikµ(ηinit−η0)e−τ(ηinit) +

∫ η0

ηinit

dηS̃ eikµ(η−η0)−τ(η) (15.2.11)

which is Eq. (8.45). If ηinit is very early, then the optical depth τ(ηinit) � 1 and the first
term vanishes:

Θ(η0) '
∫ η0

ηinit

dηS̃ eikµ(η−η0)−τ(η) (15.2.12)

In other words, the initial perturbations do not affect the visible anisotropies. For the
same reason, it makes no difference if we integrate from η = 0 or some time very soon
thereafter, so we can set the lower limit of the integral to 0:

Θ(η0) '
∫ η0

0
dηS̃ eikµ(η−η0)−τ(η) (15.2.13)

15.3 From inhomogeneities to anisotropies (II)
Hand-in

62


