
Werkcollege, Cosmology 2016/2017, Week 6
These are the exercises and hand-in assignment for the 6th week of the course Cosmology. Ev-
ery week, one of the problems provides credit towards the final exam. If at least 10 of these
problems are handed in and approved, one problem on the final exam may be skipped. The
hand-in assignment for this week is Problem 6.1 below.

6.1 Mass distribution of the Milky Way
a. Assuming that the mass distribution in the Milky Way is dominated by a spherically

symmetric dark matter halo, show that a flat rotation curve implies the following density
profile:

ρh(R) =
v2

c

4πG
R−2 (6.1.1)

where R is the galactocentric distance and vc the circular velocity.

b. For a circular velocity vc = 200 km/s, R0 = 8 kpc, calculate the density of the dark matter
halo near the Sun.

In reality, other components of the Milky Way make non-negligible contributions to the mass.
Near the Sun, the density of the stellar disc is about ρd(R0) = 0.08 M� pc−3. Assume that the
Sun is located at the midplane of the disc and that the vertical density distribution of the disc is
exponential with scale height zscl = 300 pc.

c. At R0, how far above the Galactic plane, z, is the density of the disc equal to that of the
dark halo estimated above? (you may assume that ρh is independent of z for fixed R = R0).
If you did not find an answer in 6.1.b you may assume ρh(R0) = 0.02 M� pc−3 but note
that this is not the correct answer.
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6.2 Two-body relaxation
The process of two-body relaxation plays a very important role in stellar dynamics. Over time,
it drives the distribution of stellar velocities towards a Maxwellian equilibrium distribution,
so that any memory of the initial conditions will eventually be erased. For the typical stellar
densities and relative velocities encountered in galaxies the two-body relaxation time scale is,
however, very long, so that present-day galaxies still retain some memory of their formation
conditions. In this exercise we go through the derivation of the two-body relaxation time scale.

Consider an encounter between two stars. Assume for simplicity that both stars have the same
mass, m. We use a coordinate system in which one star is initially moving along a straight line
with velocity v‖, equal to the typical relative velocities V of stars in the system, and the other
is stationary. Continuing along this path, the minimum separation between the two stars ((the
impact parameter) will be β (see figure), and the star will experience an acceleration a due to
the mutual gravitational attraction between the two stars. Clearly, by Newton’s 3rd law, the
other star will experience an acceleration of the same magnitude but opposite direction. The
component of a perpendicular to v‖, a⊥, will produce a net velocity v⊥ perpendicular to v‖ after
the encounter.

One distinguishes between strong and weak encounters, where an encounter is said to be
strong if the smallest distance of the stars during the encounter (β) is such that the (absolute)
potential energy |U(β)| is equal to (or greater than) the mean kinetic energy of a star.

a. Show that a strong encounter corresponds to an impact parameter

β <
2Gm
V2 (6.2.1)

In the solar neighbourhood, the mean volume density of stars is about n = 0.1 pc−3. Typical
relative velocities are 10 km/s, and the average mass of a star can be taken to be m = 1M�.

b. Show that the mean rate of strong encounters per star is

dnenc

dt
= 4πG2nm2V−3 (6.2.2)

Hence, demonstrate that the Sun is unlikely to have experienced a strong encounter in its
lifetime.

From the above, it follows that most stellar encounters are of the weak type. This means that
the velocity change of a star, during any one encounter, is typically small (v⊥ � v‖). It is the
cumulative effect of many distant encounters that will, eventually, be important. For further
calculations, we will thus evaluate the forces and accelerations as if the first star continues
moving along the original path and the second star remains stationary.
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c. Under these assumptions, show that the acceleration of the star perpendicular to v‖, inte-
grated over all positions along the path, produces a perpendicular velocity

v⊥ = 2
Gm
βv‖

(6.2.3)

You may find the following integral useful:∫
dx

X
√

X
= 2

2ax + b

∆
√

X
(6.2.4)

where X ≡ ax2 + bx + c and ∆ = 4ac − b2.

For relative velocities V ∼ v‖ and stellar density n, the number of encounters with impact
parameter between β and β + dβ in a small time step dt will be

d2Nenc = 2πβnV dβ dt (6.2.5)

Since the encounters may occur in random directions, the total effect of many encounters (∆V)
is found by adding the contributions of each encounter (6.2.3) quadratically,

∆V2 =
∑

v2
⊥ (6.2.6)

d. Hence show, by integrating over impact parameters in a range βmin < β < βmax, that the
total (average) velocity change in a small time step dt is

〈dV2〉 =
8πG2m2n

V
ln

(
βmax

βmin

)
dt (6.2.7)

It is not obvious what to pick for βmin and βmax, but since only the logarithm of the ratio of
these two quantities enters in the expression, their exact values are not important. Usually, it is
reasonable to assume ln Λ ≡ ln

(
βmax
βmin

)
≈ 10. The quantity ln Λ is also known as the Coulomb

logarithm.
Finally, the two-body relaxation time scale, trelax, is now defined as the time that it takes

for the effect of the cumulative distant encounters to produce a velocity change similar to the
average relative velocities of the stars, 〈dV2〉 = V2.

e. Assuming that the density and average relative velocities are constant in time, show that
this is now given as

trelax =
V3

8πG2m2n ln Λ
(6.2.8)

which is the expression discussed in the lecture.
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Formulae and constants
Distance modulus (D in pc):

m − M = 5 log10 D − 5

Black-body radiation:

Iν =
2hν3

c2

1
ehν/kT − 1

Iλ =
2hc2

λ5

1
ehc/λkT − 1

Radius of the Sun: R� = 7 × 108 m

Mass of the Sun: M� = 2 × 1030 kg

1 pc = 3.09 × 1016 m

Planck’s constant: h = 6.626 × 10−34 m2 kg s−1

Boltzmann’s constant: k = 1.38 × 10−23 m2 kg s−2 K−1

Gravitational constant: G = 6.673 × 10−11 m3 kg−1 s−2
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