Werkcollege, Cosmology 2016/2017, Week 4

These are the exercises and hand-in assignment for the 4th week of the course *Cosmology*. Every week, one of the problems provides credit towards the final exam. If at least **10** of these problems are handed in and approved, one problem on the final exam may be skipped. The hand-in assignment for this week is **Problem 4.2** below.

Flux and intensity

In the lecture we discussed the fundamental concepts flux (the energy passing through a unit surface per unit time) and *intensity* (flux per solid angle). In S.I. units, flux is expressed in units of [W m⁻²] and intensity in [W m⁻² sr⁻¹]. In many practical applications, it is more useful to specify the flux density (or specific flux), i.e., the flux per unit wavelength (F_{λ}) or frequency (F_{ν}) interval, and the corresponding quantities for the intensity (I_{λ} , I_{ν}). The flux density is often expressed in Jy, where 1 Jy = 10^{-26} W m⁻² Hz⁻¹. The total flux is then, in principle, found by integration over all wavelengths (or frequencies):

$$F = \int F_{\lambda} \, \mathrm{d}\lambda \tag{4.0.1}$$

or

$$F = \int F_{\nu} \, \mathrm{d}\nu \tag{4.0.2}$$

In practice, measuring the specific flux at all wavelengths is difficult, and we sometimes also refer to the flux integrated over a specific wavelength region, such as a particular photometric band.

4.1 F_{λ} and F_{ν}

Show that F_{ν} and F_{λ} are related as

$$\frac{F_{\nu}}{F_{\lambda}} = \frac{c}{\nu^2} = \frac{\lambda^2}{c} \tag{4.1.3}$$

4.2 Flux of astronomical objects

The brightest star in the sky, Sirius, has a radius of about 1.75 R_{\odot} and a temperature of 9900 K. Its distance is 2.6 pc.

- 1. Approximating the spectrum of Sirius by a black-body with $T_{\text{eff}} = 9900 \text{ K}$, calculate the specific intensity I_{λ} of light emitted at 5500 Å (i.e. at the centre of the V-band)
- 2. Making the approximation that I_{λ} is constant over the wavelength range covered by the *V*-band, and assuming that the bandwidth is $\Delta \lambda_V = 900$ Å, what is the *V*-band intensity I_V of the light emitted by Sirius?
- 3. Calculate the *V*-band flux from Sirius measured above the Earth's atmosphere. (*Hint:* you may make use of the fact that the intensity of black-body radiation is independent of the viewing angle. The integral $\int_0^{\pi/2} \sin\theta \cos\theta \, d\theta = \frac{1}{2}$ might be useful).

4. How many V-band photons would enter the aperture of the Hubble Space Telescope per second if it were pointed at Sirius? Assume that HST has a circular aperture with a diameter of 2.4 m. You can also assume that all photons have the same energy, corresponding to $\lambda = 5500 \text{ Å}$.

4.3 Flux, Magnitude and Surface Brightness

The flux density received from the star Vega (above the Earth's atmosphere) is $F_v = 3.6 \times 10^{-23}$ W m⁻² Hz⁻¹ in the visual region of the spectrum. Vega has a visual magnitude $m_V = 0$.

- 1. Calculate the visual magnitude of a source with a flux density of F = 1 Jy
- 2. The faintest stars visible to the unaided eye under a dark sky have visual magnitudes $V \approx 6$. Calculate the limiting sensitivity of the eye in Jy.
- 3. In astronomy, the term *surface brightness* is sometimes used instead of intensity. The natural night sky has an average visual surface brightness of about 22 mag arcsec⁻² at new Moon (meaning that the flux received from one square arcsecond of blank sky is the same as that received from a 22nd magnitude star). Over how large an area of the sky does one need to integrate to get a flux similar to that of the faintest naked-eye stars?

Formulae and constants

Black-body radiation:

$$I_{v} = \frac{2hv^{3}}{c^{2}} \frac{1}{e^{hv/kT} - 1}$$

$$I_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

Radius of the Sun: $R_{\odot} = 7 \times 10^8 \text{ m}$

$$1 \text{ pc} = 3.09 \times 10^{16} \text{ m}$$

Planck's constant: $h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$

Boltzmann's constant: $k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$