ASSIGNMENTS Week 16 (F. Saueressig) Cosmology 16/17 (NWI-NM026C)

Dr. S. Larsen and Dr. F. Saueressig

Exercise 4 is a hand-in assignment. Please submit your solution to your teaching assistant at the end of the tutorial session on **Thursday**, **12th January**. Late hand-ins will not be accepted since the solution will be published at the end of the week.

Exercise 1: cosmology revisited

Give a concise answer to the following questions:

a) The contribution of relativistic particles to the total energy density of the universe is

$$\rho = g_* \frac{\pi^2}{30} T^4 \tag{1}$$

where T is the temperature of the cosmic plasma and g_* denotes the effective number of relativistic degrees of freedom.

- 1) Explain why bosonic and fermionic degrees of freedom contribute to g_* with a different weight.
- 2) Briefly explain why the value of g_* at dark matter creation (at $T \approx 200 \text{GeV}$) differs from g_* at nucleosynthesis ($T \approx 1 \text{ MeV}$).
- b) When studying density fluctuations on a homogeneous and isotropic Friedmann-Robertson-Walker background at the linearized level, we extensively used that Fourier modes with different spatial wave number \vec{k} do not interact. What is the reason for this decoupling?
- c) The Bunch-Davies vacuum (first obtained by Chernikov and Tagirov) is the zero particle state seen by a geodesic observer in de Sitter space. Explain why this vacuum state plays an important role in inflationary cosmology.
- d) When studying scalar field inflation, we introduced the potential slow-roll parameters

$$\epsilon_V \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2, \quad \eta_V \equiv M_{\rm Pl}^2 \frac{V_{,\phi\phi}}{V}. \tag{2}$$

Here $M_{\rm Pl} \equiv (8\pi G)^{-1/2}$, $V(\phi)$ is the scalar potential and the comma denotes a derivative with respect to the scalar field. Slow-roll inflation is typically associated with the slow-roll parameters being small: $\epsilon_V \ll 1$, $\eta_V \ll 1$. Explain why these conditions are necessary but not sufficient to indicate that the system undergoes inflation.

Exercise 2: Slow-roll inflation revisited

The dynamics of a minimally coupled scalar field evolving in a Friedmann-Robertson-Walker (FRW) universe is governed by the equations of motion

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0, \qquad H^2 = \frac{M_{\rm Pl}^{-2}}{3} \left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right).$$
 (3)

Here $M_{\rm Pl} \equiv (8\pi G)^{-1/2}$ denotes the reduced Planck mass and the comma is short-hand for a derivative of the potential with respect to ϕ . In order to analyze the dynamics of inflation, one typically studies the potential slow-roll parameters ϵ_V and η_V . Analyze the single-field inflationary model, where the potential is given by a ϕ^4 term,

$$V(\phi) = \lambda \phi^4 \,, \tag{4}$$

and λ is a positive coupling constant.

- a) Determine the slow-roll parameters ϵ_V and η_V for this model.
- b) Requiring the slow-roll conditions $\epsilon_{\rm V}$, $|\eta_{\rm V}| < 1$, determine the values of ϕ where inflation is supported. Taking the (standard) condition that inflation ends if $\epsilon_{\rm V} = 1$ or $|\eta_{\rm V}| = 1$, determine $\phi_{\rm end}$ in terms of $M_{\rm Pl}$.
- c) Assuming that the scalar field starts with an initial value $\phi_{\text{init}} > \phi_{\text{end}}$ determine the number of *e*-folds of expansion the universe undergoes in this inflationary period.
- d) Evaluating the formula

$$\frac{1}{M_{\rm Pl}} \int_{\phi_{\rm end}}^{\phi_{\rm cmb}} \frac{d\phi}{\sqrt{2\epsilon_{\rm V}}} = N_{\rm cmb} \tag{5}$$

for $N_{\rm cmb} \approx 60$, determine the value $\phi_{\rm cmb}$ at which the fluctuations in the cosmic microwave background (CMB) are created.

- e) Compute the slow-roll parameters $\epsilon_{\rm V}$ and $\eta_{\rm V}$ at $\phi_{\rm cmb}$ and express the result in terms of $N_{\rm cmb}$.
- f) The massless scalar power spectrum is normalized so that $\Delta_s^2 \sim 10^{-9}$. Determine the resulting value of λ .
- g) Use the slow-roll approximation to compute the scalar spectral index n_s and the scalar-totensor ratio r predicted by this model.

Exercise 3: Non-equilibrium phases in the early universe (literature survey) Consider the following "events" in the cosmic history:

- 1) the formation of hadrons (protons, neutrons, and their anti-particles)
- 2) the formation of leptons and anti-leptons
- 3) the creation of light elements (big bang nucleosynthesis)
- 4) the creation of the cosmic microwave background (CMB)

What is the reaction that falls out of equilibrium at these events? Attribute a typical time- and energy scale to these transitions.

Exercise 4: Tracking the neutron fraction X_n numerically (hand-in exercise)

The neutron fraction is defined as

$$X_n = \frac{n_n}{n_n + n_p} \,. \tag{6}$$

Defining the evolution variable $x \equiv Q/T$, where $Q = m_n - m_p = 1.293$ MeV and T is the temperature of the cosmic plasma, the Boltzmann equation provides the following first-order differential equation determining X_n as a function of x:

$$\frac{dX_n}{dx} = \frac{x\,\lambda_{np}}{H(x=1)} \left[e^{-x} - X_n \left(1 + e^{-x} \right) \right] \,. \tag{7}$$

Here $H = 1.13s^{-1}$ and the neutron-proton conversion rate is given by

$$\lambda_{np} = \frac{255}{\tau_n \, x^5} (12 + 6x + x^2) \tag{8}$$

with $\tau_n = 886.7$ s being the neutron decay time.

- a) Determine initial conditions for (7) at temperature T = 5Q. What is the corresponding value of $x = x_{\text{init}}$ and the neutron fraction X_n ? Hint: The neutron fraction may be computed from the number densities of a species in thermal equilibrium. You can set the chemical potential $\mu = 0$ and approximate $m_n = m_p$ in the prefactor.
- b) Use the initial conditions from a) and solve (7) numerically. Plot your result to check that $X_n(x)$ indeed freezes out for x > 1.
- c) Use the numerical solution to determine the neutron fraction at temperature T = 0.1 MeV.