ASSIGNMENTS Week 11 (F. Saueressig) Cosmology 16/17 (NWI-NM026C)

Dr. S. Larsen and Dr. F. Saueressig

Exercise 3 is a hand-in assignment. Please submit your solution to your teaching assistant before the tutorial on **Wendsday**, **30th November**. Present your solution in a readable way.

Exercise 1: Heating the cosmic plasma

Typically, the cosmic plasma T cools as $T \propto a^{-1}$. When particles (e.g. primordial black holes) decay, they deposit energy in the cosmic plasma. (Note: this does not imply that the temperature of the universe actually increases, it just states that it cools slower than a^{-1} .) The entropy density s of the cosmic plasma is defined as

$$s \equiv \frac{\rho + p}{T} \,. \tag{1}$$

The entropy density scales according to $s \propto a^{-3}$ so that sa^3 is actually a conserved quantity. Use the conservation of sa^3 to compute the ratio of $(aT)^3$ at T = 10 GeV (the energy scale where WIMPs decouple) and its present value.

- a) Note that only relativistic species contribute to the entropy density in an efficient way. Thus compute the number of effective relativistic species g_* at 10 GeV and today. (Hint: this requires some particle physics knowledge. For T = 10 GeV you should obtain $g_* =$ 86.25. Taking into account that neutrinos decouple after e^+e^- annihilation, which lowers the temperature of the cosmic neutrino background, the effective number of relativistic degrees of freedom today is $g_* = 3.36$.).
- b) Use the energy and momentum densities for relativistic particles constructed constructed in last weeks exercises to relate $(aT)^3$ at T = 10 GeV and today.

Exercise 2: Harmonic oscillator revisited

Consider the harmonic oscillator with constant frequency ω . Use the expansion of the position operator,

$$\hat{x} = v(t)\hat{a} + v^*(t)\hat{a}^{\dagger},$$
(2)

together with the property that the vacuum is annihilated by \hat{a} to show that the fluctuations of the position in the vacuum state are determined by the mode function v(t):

$$\langle 0 | |\hat{x}|^2 | 0 \rangle = |v(t)|^2.$$
(3)

Exercise 3: Fourier-modes decouple for linearized perturbations (hand-in exercise) Consider the linearized Einstein's equations around a general FRW background

$$\delta G_{\mu\nu} = 8\pi G \,\delta T_{\mu\nu} \,. \tag{4}$$

Owed to the homogeneity of the background the linearized equations possess a translation symmetry in the spatial coordinates, i.e., $x^i \mapsto x^i + \Delta x^i$ with Δx^i being constant is a symmetry. The Fourier-components of a general perturbation $\delta Q(t, \mathbf{x})$ are defined as

$$\delta Q(t, \mathbf{k}) = \int d^3 \mathbf{x} \, \delta Q(t, \mathbf{x}) \, e^{-i\mathbf{k}\mathbf{x}} \,. \tag{5}$$

Here and in the following spatial components of a vector are indicated as bold-face letters. Show that *translation invariance* implies that different Fourier modes (identified by different wavenumbers k) evolve independently.

Hint: you may use that linear equations of the form (4) may be solved by the transfer-matrix method

$$\delta Q_I(t_2, \mathbf{k}) = \sum_{J=1}^N \int d^3 \bar{\mathbf{k}} T_{IJ}(t_2, t_1, \mathbf{k}, \bar{\mathbf{k}}) \, \delta Q_J(t_1, \bar{\mathbf{k}}) \,, \tag{6}$$

where δQ_I , I = 1, ..., N are N independent perturbations which are evolved from initial time t_1 to the final time t_2 and the transfer matrix follows form the linearized Einstein's equations.

Exercise 4: Single-field inflation: the case $m^2\phi^2$ revisited

In the mass-driven inflation model based on the potential $V(\phi) = \frac{1}{2}m^2\phi^2$ the fluctuations forming the CMB are created at $\phi_{\star} = \phi_{\rm cmb}$ approximately $N_{\rm cmb} \sim 60$ *e*-folds before the end of inflation. Compute the scalar spectral index n_s and the tensor-to-scalar ratio r evaluated at the CMB scale.

- a) Compute the slow-roll parameters $\epsilon_{\rm V}$ and $\eta_{\rm V}$ at ϕ_{\star} and express the result in terms of $N_{\rm cmb}$.
- b) The massless scalar power spectrum is normalized so that $\Delta_s^2 \sim 10^{-9}$. Show that this fixes the inflaton mass to be $m \sim 10^{-6} M_{\rm Pl}$.
- c) Use the slow-roll approximation to compute the scalar spectral index n_s and the scalar-totensor ratio r.
- d) Compare the results with current cosmological data compiled by the particle physics data group (see: pdg.lbl.gov/2015/reviews/rpp2014-rev-cosmological-parameters.pdf).

Exercise 5: Working with scientific literature - a howto

Download the lecture notes on inflation: arxiv.org/pdf/0907.5424. Start from the action eq. (181),

$$S^{(2)} = \frac{1}{2} \int d^4 x \, a^3 \, \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] \,, \tag{7}$$

which results from the Einstein-Hilbert action supplemented by the action of a scalar field expanded to second order in the gauge-invariant curvature parameter \mathcal{R} .

a) Rewrite the action (7) in terms of the Mukhanov variable

$$v \equiv z \mathcal{R}, \qquad z^2 \equiv a^2 \frac{\dot{\phi}^2}{H^2}.$$
 (8)

Show that the result is given by

$$S^{(2)} = \frac{1}{2} \int d\tau d^3x \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z} v^2 \right].$$
(9)

Here τ is the conformal time variable and the prime denotes a derivative with respect to τ . Compare (9) to eq. (183) in the lecture notes.

b) Verify that the sign mistake in eq. (183) "does not propagate", i.e., check that

$$v_k'' + \left(k^2 - \frac{z''}{z}\right)v_k = 0 \tag{10}$$

is indeed the correct equation of motion for the Fourier mode.

Remark: This exercise is a very valuable lesson in good scientific conduct: if you copy equations from literature sources, make sure that, firstly, you understand the conventions and, secondly, verify that the equations which you are using are correct.