
ASSIGNMENTS Week 10 (F. Saueressig)

Cosmology 16/17 (NWI-NM026C)

Dr. S. Larsen and Dr. F. Saueressig

Exercise 1 is a hand-in assignment. Please submit your solution to your teaching assistant

before the tutorial on Wendsday, 23rd November. Present your solution in a readable way.

Exercise 1: Particles at thermal equilibrium (hand-in exercise)

According to statistical physics the energy distribution of particles in thermal equilibrium is given

by the Fermi-Dirac (fermions) and the Bose-Einstein (bosons) distribution

f(E, T ) =
1

e(E−µ)/(kBT ) ± 1
. (1)

Here + is for fermions, − for bosons, T is the temperature, and E =
√
~p2 +m2 denotes the

energy of the particle with mass m. Moreover, µ is a chemical potential, g is a degeneracy factor

(e.g., photons have two polarizations which are accounted for by setting g = 2) and kB denotes

the Boltzmann constant. We will work with kB = 1 in the following. Based on the distributions

(1) one defines the

number density n = g
∫ d3p

(2π)3
f(~p)

energy density ρ = g
∫ d3p

(2π)3
E(~p) f(~p)

pressure p = g
∫ d3p

(2π)3
|~p|2

3E(~p) f(~p) .

(2)

a) Consider the limit where |µ| � T and m � T . In this limit the integrals (2) may be

approximated by setting µ = 0 and m = 0. Show that, in this limit

n =

{
3

4π2 ζ(3)g T 3 , fermions
1
π2 ζ(3)g T 3 , bosons

(3)

ρ =

{
7
8
π2

30 g T
4 , fermions

π2

30 g T
4 , bosons

(4)

p =
1

3
ρ ≈

{
1.0505nT , fermions

0.9004nT , bosons
(5)

Here ζ(z) ≡
∑∞

n=1 n
−z is the Riemann zeta function and ζ(3) ≈ 1.202.

b) Consider the non-relativistic limit, T � m and T � m−µ. In this limit the typical kinetic

energies are much below the mass m, so that one can approximate E ≈ m+ ~p2/(2m). The



second condition, T � m − µ leads to occupation numbers � 1 so that one considers a

dilute system. In this case, the denominator appearing in (1) can be approximated by

e(E−µ)/T ± 1 ≈ e(E−µ)/T (6)

and the expressions for bosons and fermions become approximately equal. Show that in this

case

n = g

(
mT

2π

)3/2

e−
m−µ
T (7)

ρ = n

(
m+

3T

2

)
(8)

p = nT � ρ . (9)

c) Use the Friedmann equation for a spatially flat universe (k = 0) to obtain a relation between

the Hubble parameter H and the temperature of the universe. Show that in the radiation

dominated era

H2 =
8πG

3

π2

30

(
gb +

7

8
gf

)
T 4 , (10)

where gb and gf count the bosonic and fermionic degrees of freedom which are still relativistic

at temperature T (and not frozen out).

d) Denote the number of effective relativistic degrees of freedom by g∗, i.e., g∗ ≡
(
gb + 7

8 gf
)
.

Note that g∗(T ) depends on the temperature. Estimate g∗(T ) at the energy scale relevant

for nucleosynthesis where T ≈ 1 MeV.

Exercise 2: Equation of state parameter for photons

The general form of the stress-energy tensor of a perfect fluid is of the form

Tµν = (ρ+ p) uµ uν + p gµν , (11)

where uµ is the four-velocity of the perfect fluid.

a) Defining the trace of the stress-energy tensor T ≡ gµνTµν show that T = −ρ+ 3p.

b) The action of a free photon minimally coupled to gravity has the form

Sγ = −1

4

∫
d4x
√
−g Fµν Fµν , (12)

where Fµν = ∂µAν − ∂νAµ is the field-strength tensor known from electrodynamics and

indices are raised with the spacetime metric. Apply the variation formula with respect to

the metric to construct the stress-energy tensor of photons in terms of the field strength

Fµν by explicitly constructing

Tµν = − 2√
−g

δSγ

δgµν
. (13)

Hint: you may want to compare your result to the literature (see, e.g. Weinberg’s book on

cosmology).
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c) Trace the stress-energy tensor constructed in part b) and show that T = 0. Combine your

result with part a) to determine the equation of state-parameter for photons (more general,

for relativistic particles).

Exercise 3: Slow-roll parameters for single-field inflation

The dynamics of a minimally coupled scalar field evolving in a Friedmann-Robertson-Walker

(FRW) universe is governed by the equations of motion

φ̈+ 3Hφ̇+ V,φ = 0 ,

H2 =
M−2Pl

3

(
1

2
φ̇2 + V (φ)

)
.

(14)

Here MPl ≡ (8πG)−1/2 denotes the reduced Planck mass and the comma is short-hand for a

derivative of the potential with respect to φ. In order to test if a model undergoes an inflationary

phase one introduces the slow-roll parameters

ε ≡ − Ḣ

H2
, η ≡ ε− 1

2ε

dε

dN
= − φ̈

Hφ̇
(15)

where ε < 1 ensures that the universe undergoes accelerated expansion and |η| < 1 guarantees

that the fractional change of ε per e-fold of expansion N ≡ ln aend
a is small.

During a phase of slow-roll inflation, the potential energy of the scalar field dominates over

the kinetic energy,

φ̇2 � V (φ) , (16)

and the sustained accelerated expansion is ensured by the condition that the second time deriva-

tive of φ is sufficiently small

|φ̈| � |3Hφ̇| ,
∣∣∣∣dVdφ

∣∣∣∣ . (17)

Show that the assumptions (16) and (17) allow to express the geometrical slow-roll parameters

(15) in terms of the scalar potential

ε ' εV , η ' ηV − εV . (18)

where

εV ≡
M2

Pl

2

(
V,φ
V

)2

, ηV ≡M2
Pl

V,φφ
V

. (19)

Exercise 4: Single-field inflation: the case m2φ2

Carry out the slow-roll analysis for the, arguably, simplest single-field inflationary model where

the potential is given by a mass term:

V (φ) = 1
2 m

2 φ2 . (20)
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a) Determine the slow-roll parameters (19) for this model.

b) Requiring the slow-roll conditions εV, |ηV| < 1, determine the values of φ where inflation

is supported. Taking the (standard) condition that inflation ends if εV = 1 or |ηV| = 1,

determine φend.

c) Assuming that the scalar field starts with an initial value φinit > φend determine the number

of e-folds of expansion the universe undergoes in this inflationary period.

d) Evaluating the formula
1

MPl

∫ φcmb

φend

dφ√
2εV

= Ncmb (21)

for Ncmb ≈ 40− 60, determine the scale at which the fluctuations in the cosmic microwave

background (CMB) are created.

Exercise 5: Reheating

After inflation ends the scalar field begins to oscillate around the minimum of the potential. Close

to the minimum the potential may then be approximated by a quadratic term, V (φ) = 1
2m

2φ2.

Assuming that the oscillations are much faster than the evolution of the Hubble parameter, eq.

(14) simplify to the equations of motion of an harmonic oscillator. Introducing the average energy

ρ̄φ ≡ 〈φ̇2〉t averaged over one oscillatory period to show that the averaged energy density decays

as
dρ̄φ
dt

+ 3Hρ̄φ = 0 . (22)
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