
Distance determination



Overview

• How do we determine distances to astronomical 
objects?

• “Cosmic distance ladder” - 

1. Calibrate nearby objects, 

2. Identify similar objects associated with more rare 
objects at greater distances (e.g. in star clusters)

3. Calibrate rare objects

4. Identify rare objects at even greater distances, 
etc...



Image from:  http://www.daviddarling.info/encyclopedia/C/cosmic_distance_ladder.html 

http://www.daviddarling.info/encyclopedia/C/cosmic_distance_ladder.html


Image from:  http://www.astro.gla.ac.uk/users/kenton/C185/ladder.gif

Key Point:   methods must overlap in order for more distant 
ones to be calibrated...

http://www.astro.gla.ac.uk/users/kenton/C185/ladder.gif


Geometric methods



Trigonometric parallax

Simple idea:

Nearby objects appear to shift, 
relative to more distant ones, 
when the observer moves.

A Ap

The shift, p, depends on the 
distance



Also works for stars

p = Parallax

1AU = d tan p ' dp

d = 1AU/p



Trigonometric parallax

• Principle known to Tycho Brahe (1546-1601) who could not measure it 
for any star and therefore concluded that the Earth does not move 
around the Sun

• First measured by F. W. Bessel in 1838 (MNRAS 4, 152) for 61 Cygni 
(p=0.29”)

• Largest parallax is for Alpha Cen (0.742”)

• One arcsec (“) = 1/3600 deg = 1/206265 radians

2 km

⇡ 100



Parsec (pc)

Convenient unit for distance 
measurements.

1 parsec = 1 “parallax second”

Distance of a star that has a parallax of 
one arcsecond

1 pc = 206265 AU = 3.09×1016 m



Trigonometric parallax

• Best accuracy from the ground : δp ~ 1/50” 
10% accuracy for p = 1/5” or d = 5 pc

• Hipparcos satellite (1989-1993) measured 
parallaxes accurate to ~0.001” for 120000 stars.  
10% accuracy for p = 1/100” or d = 100 pc

• Gaia (launched in October 2013) is measuring 
parallaxes for about 109 stars accurate to 10-5 
arcsec.  
10% distance accuracy at d = 104 pc - Galactic 
centre!



Moving cluster method

• Geometric method, exploiting effect of 
perspective

• Useful for group of stars with large apparent 
diameter and coherent space motion

• Best case: Hyades





Hyades

APOD 2000, 
Sep 29

Pleiades





“Moving cluster” demo

Observer at 
(x,y,z) = (0,0,0)

Top: Side view, 
projected along y-axis

Bottom: Observer’s 
view



D

Geometry: vt/vr = tan(f)
vr = radial velocity

vt = µDμ = proper motion:

µD
vr

= tanf

D =
vr tanf

µ

Distances from moving cluster method



Applications of Moving 
Cluster method

• Hyades: D ~ 45 pc (Hipparcos: 46 pc)

• Pleiades: D ~ 115 pc

• Ursa Major group: D ~ 24 pc

• Scorpio-Centaurus group: D ~ 170 pc



de Bruijne et al. 2001, A&A 367, 111

CMD for Hyades

With distance known,  
absolute magnitudes can 
be determined:

M = m + 5 log

(

10pc

D

)



Main Sequence Fitting

Allows calibration of “standard candles” (e.g. 
Cepheids, RR Lyrae stars) in star clusters

D = (10 pc) × 10(m−M)/5

= 10
1+(m−M)/5



Panagia et al. 1991,  ApJ 380, L23

tmax~400 days

t0~90 days
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Distance to the LMC: Light echo of SN1987A

Light from SN travels directly to observer along path A 
 
Light from SN travels to surrounding ring, hits ring and then is re-
emitted (in UV) along paths B and C  
 
By comparing arrival times via paths B and C we can determine the size 
of the ring.

Direct method, does not rely on other calibrators!



Light echo of SN1987A

Rring

IUE observed (UV) line emission at t0=90 days after SN 
explosion, increasing in strength until tmax=400 days

Path C:

Path B: t0 = tB � tA = (DB + Rring �DA)/c

= (�Rring sin i + Rring)/c = (1� sin i)Rring/c

t
max

= tC � tA = (1 + sin i)R
ring

/c
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Panagia et al. 1991,  ApJ 380, L23 tmax~400 days

Measured on HST images: radius = rring = 0.83” = 4.0x10-6 rad
Distance = Rring/rring = 52 kpc

t0~90 days
t
max

= (1 + sin i)R
ring

/c

t0 = (1� sin i)Rring/c

t
max

� t
0

= 2 sin iR
ring

/c

t
max

+ t
0

= 2R
ring

/c

sin i = (t
max

� t
0

)/(t
max

+ t
0

) i ⇡ 40�

Rring = 0.21 pc



Binney & Merrifield, “Galactic Astronomy”



Cepheids
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Sandage et al. (2004)

50 A. Sandage et al.: New P-L and P-C relations of classical Cepheids. II.
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Fig. 4. The P-L relations in B, V , and I of LMC Cepheids. The data in each color are fitted with two linear regressions breaking at log P = 1.0.
Symbols as in Fig. 1a. For the dashed intrinsic boundaries see text (6.2). Comparison with the revised Galactic calibration in Sect. 4.2.1
(Eqs. (16)−(18)) are in the lower right panel. The individual Galactic Cepheids with known absolute magnitudes (cf. Sect. 4.2.1) are the data
points. The LMC mean relations are the solid lines.

ηAql (Lane et al. 2002; Kervella et al. 2004), ζ Gem (Lane
et al. 2002), and l Car (Kervella et al. 2004). Unweighted means
have been adopted for Cepheids with more than one BBW dis-
tance. This brings the total of BBW distances to 36 Cepheids.

Kovács (2003) has published independent BBW absolute
magnitudes of 25 Galactic Cepheids. His results for log P > 1
are in excellent agreement on average with the above data, yet
his magnitudes for log P < 1 are ∼0.m5 brighter on average than
the latter. Correspondingly his suggested slope of the Galactic
P-L relation is much flatter than from either Fouqué’s et al.
results or the cluster Cepheids. For this reason his results are
not used here.

The Galactic P-L relations in B,V , and I as defined by the
33 cluster Cepheids3 and the 36 Cepheids with BBW distances
are shown in Fig. 5. Separate linear regressions of either set
are given at the bottom of each panel in Fig. 5. The agree-
ment of the P-L relations from entirely independent distance
determinations is impressive. The cluster data give marginally
steeper slopes. If the BBW distances of the longest-period
Cepheids GY Sgr and V Vul had been included from Gieren
et al. (1998) the agreement in slope would be nearly perfect;

3 I-magnitudes of new calibrators not in Table 1 of Paper I are taken
from Lanoix et al. (1999). No I-magnitude is available for TV CMa.

P-L relations for LMC 
Cepheids



Cepheids
Pulsating variables, driven by “Eddington valve”

Generally: Stars are in hydrostatic equilibrium (pressure/  
                 gravity balance). 
                 If “compressed”, ρ, T, and P will increase, and  
                 the star will “bounce back” toward equilibrium.

Cepheids: “partial He II ionization zone” drives oscillations:  
                 Compression ➝ increasing ρ, T ➝ sudden  
                 ionization of He ➝ increase in opacity ➝  
                 radiation is “trapped” and pushes outer layers  
                 back.



The instability strip
Hot stars: P.I.Z. too close to surface;  
Eddington valve not effective Cool stars: atmospheres become convective;  

Eddington valve not effective





Cepheid in M100 (in Virgo cluster)

APOD 1996, Jan 10



Cepheids in M100
Ferrarese, Freedman et al. 
1996, ApJ 464, 568

52 Cepheids in M100

mV=25-26.5
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Cepheids in M100
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Distance = 16.1 +/- 1.3 Mpc
(Ferrarese et al. 1996)



Baade-Wesselink

• Uses pulsating stars to get size (and therefore 
distance) information

• Combines information about linear changes in 
sizes of variable stars (from radial velocities) 
with relative changes (from light curves) to get 
distances

• Applied to RR Lyrae stars (GCs, LMC, SMC) 
Cepheids, Miras (long period variables), and 
(in modified form) SNe



Absolute size change: DR =
Z

t0+Dt

t0

dR

dt

dt =�p

Z
t0+Dt

t0

v

los

dt

p ≈ 1.5

It’s fairly straightforward to find the difference in radii:

Compares difference of radii with ratio of radii  
at two different points in the pulsation cycle  

 
--> two equations with two unknowns  

(voila -- easily solved)



Stephan-Boltzmann law: L = 4pR2sT 4
e f f

1/H = 1+DR/R0 ! R0 =
DR

1/H�1
=

HDR
1�H

R0 now known -> L follows from S-B law, and distance can be obtained from apparent magnitude.

= −5 log R − 10 log Teff + C

Magnitudes: Mbol = −2.5 log L + C
′

At two epochs with same Teff: difference in L yields relative size change

Dm

bol

= DM

bol

=�5 [log(R
0

+DR)� logR

0

]∆mV =

Finding the ratio is a little more complicated (but not too much)
we can use:  

Dm

bol

/5 =� log

R

0

+DR

R

0

10Dmbol/5 = H =
R0

R0 +DR

Ratio!



Caveats:

• Region forming absorption lines may not 
exactly trace surface seen in continuum - 
factor p between vlos and dR/dt uncertain

• Pulsations may be non-radial

• Not trivial to identify points of constant Teff 
on light curve



Eclipsing Binaries - I
J. V. Clausen et al.: uvby CCD light curves 515

Fig. 6. uvby light curves of HV982 (LMC). The theoretical curves correspond to the solutions given in Table 8.

Table 5. Times of minima for HV982 (LMC). O–C values (in days)

are calculated for the apsidal motion parameters given in Table 6.

References are: G1977, Gaposhkin (1977); P1998, Pritchard et al.

(1998b); C2003, this paper. The rms errors of the G1977 times are

estimated. Note the perfect agreement between P1998 and C2003

for JD 2449337.

HJD-2 400 000 rms Type O–C Reference

13946.555 0.050 P 0.0290 G1977

17590.584 0.050 P 0.0350 –

23875.527 0.050 P ⇤0.0360 –

25849.645 0.050 P 0.0130 –

26060.243 0.100 S 0.0900 –

26412.253 0.050 S ⇤0.0160 –

26577.631 0.050 S ⇤0.0270 –

27786.315 0.050 P ⇤0.0380 –

29189.469 0.100 P ⇤0.0700 –

29629.338 0.050 S ⇤0.0060 –

31304.630 0.050 S 0.0520 –

32070.603 0.050 P 0.0002 –

33153.625 0.050 P ⇤0.0420 –

49335.3866 0.0004 P 0.0018 P1998

49337.6668 0.0004 S ⇤0.0002 –

49337.6670 0.0010 S 0.0018 C2003

49340.7172 0.0005 P ⇤0.0028 –

50695.8520 0.0110 P 0.0086 P1998

Table 6. Apsidal motion parameters for HV982 (LMC).

Parameter Value and rms error

i (�) 88.7 (assumed)

e 0.159 (assumed)

T0 2449335.17575 ± 0.00049
Panomalistic (d) 5.335595 ± 0.000025
Psidereal (d) 5.335220

⇤0 (�) 224.67 ± 0.15
⇤1 (�/ cycle) 0.00253 ± 0.00018
U (yr) 208 ± 15

the longitude of periastron has changed from 224.�5 to 225.�0
and the phase of mid secondary eclipse relative to mid primary

eclipse from 0.428 to 0.429. For the light curve analyses, the

e⇥ect of apsidal motion can be ignored, except for a few points

during secondary eclipse from JD 2450041, which have been

excluded.

6.4. Light curve analysis, photometric elements

Pritchard et al. (1998b) presented photometric elements de-

rived from their CCD light curves, adopting a modified ver-

sion of the Wilson-Devinney (WD) code (Wilson & Devinney

1971; Wilson 1994). Light curves in all bands were analyzed

θ1
θ2

R

t1t2

A

R = stellar radius
A = radius of orbit

For two identical stars, circular orbit: R/A = sin(θ1/2)

θ1/θ2 = t1/t2 θ1 + θ2 = π ⇒ θ2 = π − θ1

(π − θ1)/θ1 = t2/t1 ⇒ π/θ1 = t2/t1 + 1

⇒ θ1 =
π

t2/t1 + 1 so R/A = sin

(

1

2

π

t2/t1 + 1

)

Relative dimensions



Eclipsing Binaries - II

L = 4pR2sT 4
e f f M

V

=�5logR/R��10logT

e f f

/T

e f f�+M

bol��BC

V

obs

= M

V

+A

V

+5log

✓
D

10pc

◆

Finally, L follows from

Circumference of orbit

2πA = vorbP P = period

Yields stellar radius R

Absolute dimensions from radial velocities:

Combine with

R/A = sin

(

1

2

π

t2/t1 + 1

)



Eclipsing binaries - caveats:

• Stars are generally not identical (although 
often quite similar)

• Orbits may not be circular

• Stars may not be spherical

• Line-of-sight may not lie in orbital plane

• Reflection effects, star spots, etc.



Surface brightness fluctuations
Finite number of stars per “resolution element” leads 

to “granular” appearance of distant galaxies

HST image of nearby galaxy: 
NGC 3384

Smoothed to simulate appearance of 
more distant galaxy



Small resolution element:
Mean surface density of stars:            pc-2

Each star has luminosity dq

(dq)2

n
L

Number of stars per resolution element: N = n(Ddq)2

Flux per resolution element= 
Independent of D

F = NL/(4pD2) = nL(dq)2/4p

(sF)2

F
=

L2(dq)2n
(4pD)2

4p
nL(dq)2 =

L
4pD2Relative fluctuations

Number fluctuations sN =
p

N =
p

n(Ddq)2 = Ddq
p

n

sF = LsN/(4pD2) = Ldq
p

n/(4pD)Flux fluctuations



SBF technique
• Introduced by Tonry & Schneider (1988, AJ 96, 

807)

• Requires accurate (to ~1%) surface brightness 
measurements - CCD photometry

• 3-D structure of Virgo cluster, distance to 
Coma cluster (~100 Mpc)

• Useful for dwarf galaxies: few alternatives



Binney & Merrifield, “Galactic Astronomy”



Tully-Fisher Relation

Relation between HI 21 cm line 
width and galaxy luminosity

Tully & Fisher 1977, A&A 54, 661

Applies to galaxies with rotating 
gas disks (i.e. spirals).
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21 cm profiles (Tully & Fisher 1977)



Tully-Fisher Relation
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Notes:
ΔV must be corrected for 
inclination (sin i) and random 
gas motions

Magnitude must be corrected 
for internal absorption - 
better to use magnitudes that 
are less affected by extinction 
(e.g. near-IR)

L µ DV (o)2.5±0.3



Tully-Fisher relation

702 SAKAI ET AL. Vol. 529

(2)È(6) give BV RI total and aperture magnitudes cor-H~0.5rected for Galactic extinction and internal extinction, as
described in ° 2.2. For raw, uncorrected magnitudes, see
Macri et al. (2000). The photometric data for NGC 224,
NGC 598, NGC 2403, and NGC 3031 were taken directly
from Pierce & Tully (1992). Column (7) gives the logarith-
mic 20% line width corrected for inclination (using the
mean inclination) and redshift, column (8) the logarithmic
50% line width corrected for inclination and redshift,
column (9) photometric I-band inclination, and column (10)
lists the mean photometric inclination used to calculate the
internal extinction and to correct for the inclination of the
line widths. This table lists the I-band photometric inclina-
tion angles, since the strategy is to bring our photometry/
line-width data into the same system as the distant cluster
surveys. As will be described in detail later on, the I-band
survey by G97 estimated the galaxy inclinations from their
I-band images. We note, however, that in most cases, the
BV RI photometric inclinations agree with each other
extremely well, within 1 p errors.

3. CALIBRATION OF MULTIWAVELENGTH TULLY-FISHER

RELATIONS

In this section, we derive TF calibrations using two inde-
pendent methods. In the Ðrst method, we obtain a consis-
tent set of TF relations in order to compareBV RIH~0.5and examine the dispersions and the role of second param-
eters. This is done by using only the calibrator galaxies with
directly measured Cepheid distances. The 20% line widths
and the mean photometric inclination angles estimated
from BV RI measurements will be used in this case. The
second method is to derive TF calibrations that can

actually be applied to the distant cluster surveys to estimate
This is done by using appropriate line width and incli-H0.

nation angles, and incorporating the cluster galaxy data to
calculate the TF slopes.

3.1. Tully-Fisher Calibration Using Nearby Calibrator
Galaxies Only

First, we present TF relations for he 20%BV RIH~0.5line width, using the mean of the BV RI photometric incli-
nation angles (col. [10] of Table 2) derived from 21 nearby
galaxies with Cepheid distances only. While the optical
photometric data, BV RI, are all total magnitudes, the
H-band magnitude, is an aperture magnitude,H~0.5,
extrapolated to the radius equivalent to half the total blue
light of the galaxies. Slopes and zero points are determined
using bivariate linear Ðts, minimizing errors in both log W c
and Mc :

B
T
c \ [(7.97 ^ 0.72)(log W 20c [ 2.5) [ (19.80 ^ 0.11) (6)

V
T
c \ [(8.87 ^ 0.83)(log W 20c [ 2.5) [ (20.34 ^ 0.12) (7)

R
T
c \ [(8.78 ^ 0.72)(log W 20c [ 2.5) [ (20.65 ^ 0.11) (8)

I
T
c \ [(9.24 ^ 0.75)(log W 20c [ 2.5) [ (21.12 ^ 0.12) (9)

H~0.5c \ [(11.03 ^ 0.86)(log W 20c [ 2.5) [ (21.74 ^ 0.14)

(10)

These TF relations are plotted in Figure 1. The observed
dispersions of the relations are p \ 0.43, 0.37, 0.34, 0.36, and
0.36 for BV RI and respectively, which are com-H~0.5,
binations of the observational errors and intrinsic scatter of
the Tully-Fisher relations themselves. The latter will be dis-
cussed in ° 3.4. Errors in log W and absolute magnitudes

Tully-Fisher relations for spiral galaxies with Cepheid distances, using 20% line width. Solid lines represent the bivariate Ðts, whileFIG. 1.ÈBV RIH~0.5the dotted and dashed lines represent inverse and direct Ðts, respectively.Sakai et al. (2000)
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Adapted from J. Schombert, Univ. of Oregon
http://abyss.uoregon.edu/~js/ast123/lectures/lec13.html

Spiral galaxies rotate, 
doppler shift varies across 
disc.

Width W of emission line 
profile (e.g. from HI) can be 
measured, independently of 
distance.

http://abyss.uoregon.edu/~js/ast123/lectures/lec13.html


Supernovae

• Supernovae of Type 1a (thermonuclear explosions 
of white dwarfs) are believed to be good standard 
candles.

• Absolute magnitude at maximum is MB=-19.3 - 
comparable to a whole galaxy!

• SNe can be observed at cosmological distances



Supernova in NGC 4526



Type Ia SNe are believed to 
occur when a white dwarf 
becomes more massive than 
the Chandrasekhar limit 
(1.4 M⊙).

The WD then becomes 
unstable and explodes.

Exact physics of the 
accretion and explosion 
itself uncertain. However, 
light curves are empirically 
shown to be well behaved.



Branch & Tammann 1992

SN Ia light curve

Decay of 56Ni, 
t1/2 = 6 days

Decay of 56Co, 
t1/2 = 79 days



Refining SN Ia as standard candles
19
96
AJ
..
..
11
2.
23
91
H

Hamuy et al. (1996)

Δm15 = fading after 15 days.

Strong correlation between 
absolute magnitude at maximum 
and Δm15

When this is taken into account, 
the scatter is only ~0.15 mag.

Sufficient to constrain cosmological 
models (when many data points are 
used)



Complication: K-corrections
• Fixed photometric filters used for observations (e.g. 

B, V, R) correspond to different rest-frame 
wavelengths for SNe at different redshifts.

• Two consequences:

- A different (bluer) part of the spectrum is seen at 
non-zero redshift

- Filter width Δλ mapped to a smaller rest-frame 
wavelength range, Δλ/(1+z)

• Corrections based on the spectral energy 
distributions of SNe



K-correction
Redshift z=0

f(�)

��1 �2

Redshift z:

f(�)

��1

1 + z

�2

1 + z

Flux density of rest-frame 
spectrum over filter bandpass S:

Flux density of red-shifted spectrum:

f0 =
R

f(�) S(�) d�R
S(�) d�

fz =
R

f [�/(1 + z)]S(�) d�R
S(�) d�



In magnitudes: 

m0 = mz � 2.5 log10

✓ R
f(�)S(�)d�R

f [�/(1 + z)]S(�)d�

◆
� 2.5 log10(1 + z)

where the ‘K’-correction is

K(z) = 2.5 log10

✓ R
f(�)S(�)d�R

f [�/(1 + z)]S(�)d�

◆
+ 2.5 log10(1 + z)

Shift of bandpass correction for (1+z) 
“compression” of 
wavelength scale

Important: depends on the spectrum of the source, f(λ)!

(Oke & Sandage 1968)



The Hubble constant
• Accurate calibration of distance 

scale and determination of H0 one 
of the main goals of the Hubble 
Space Telescope

• Outcome of HST Key Project:

H0 = (72±8) km s-1 Mpc-1 

(Freedman et al. 2001)
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FIG. 4.ÈTop : Hubble diagram of distance vs. velocity for secondary
distance indicators calibrated by Cepheids. Velocities in this plot are cor-
rected for the nearby Ñow model of Mould et al. (2000a). Squares : Type Ia
supernovae ; Ðlled circles : Tully-Fisher clusters (I-band observations) ; tri-
angles : fundamental plane clusters ; diamonds : surface brightness Ñuctua-
tion galaxies ; open squares : Type II supernovae. A slope of isH0 \ 72
shown, Ñanked by ^10% lines. Beyond 5000 km s~1 (vertical line), both
numerical simulations and observations suggest that the e†ects of peculiar
motions are small. The Type Ia supernovae extend to about 30,000 km s~1,
and the Tully-Fisher and fundamental plane clusters extend to velocities of
about 9000 and 15,000 km s~1, respectively. However, the current limit for
surface brightness Ñuctuations is about 5000 km s~1. Bottom : Value of H0as a function of distance.

^ 7 km s~1 Mpc~1. The random uncertainty is deÐned at
the ^34% points of the cumulative distribution. The sys-
tematic uncertainty is discussed below. For our Bayesian
analysis, we assume that the priors on and on the prob-H0ability of any single measurement being correct are uniform
and compute the project of the probability distributions. In
this case, we Ðnd km s~1 Mpc~1. TheH0 \ 72 ^ 2 ^ 7
formal uncertainty on this result is very small, and simply
reÑects the fact that four of the values are clustered very
closely, while the uncertainties in the FP method are large.
Adjusting for the di†erences in calibration, these results are
also in excellent agreement with the weighting based on
numerical simulations of the errors by Mould et al. (2000a),
which yielded 71 ^ 6 km s~1 Mpc~1, similar to an earlier
frequentist and Bayesian analysis of Key Project data
(Madore et al. 1999) giving km s~1H0 \ 72 ^ 5 ^ 7
Mpc~1, based on a smaller subset of available Cepheid
calibrators.

As is evident from Figure 3, the value of based on theH0fundamental plane is an outlier. However, both the random
and systematic errors for this method are larger than for the
other methods, and hence the contribution to the combined
value of is relatively low, whether the results areH0weighted by the random or systematic errors. We recall also
from Table 1 and ° 6 that the calibration of the fundamental
plane currently rests on the distances to only three clusters.
If we weight the fundamental-plane results factoring in the
small number of calibrators and the observed variance of
this method, then the fundamental plane has a weight that

ranges from 5 to 8 times smaller than any of the other four
methods, and results in a combined, metallicity-corrected
value for of 71 ^ 4 (random) km s~1 Mpc~1.H0Figure 4 displays the results graphically in a composite
Hubble diagram of velocity versus distance for Type Ia
supernovae ( Ðlled squares), the Tully-Fisher relation ( Ðlled
circles), surface-brightness Ñuctuations ( Ðlled diamonds), the
fundamental plane ( Ðlled triangles), and Type II supernovae
(open squares). In the bottom panel, the values of areH0shown as a function of distance. The Cepheid distances have
been corrected for metallicity, as given in Table 4. The
Hubble line plotted in this Ðgure has a slope of 72 km s~1
Mpc~1, and the adopted distance to the LMC is taken to be
50 kpc.

8. OVERALL SYSTEMATIC UNCERTAINTIES

There are a number of systematic uncertainties that a†ect
the determination of for all the relative distance indica-H0tors discussed in the previous sections. These errors di†er
from the statistical and systematic errors associated with
each of the individual secondary methods, and they cannot
be reduced by simply combining the results from di†erent
methods. SigniÐcant sources of overall systematic error
include the uncertainty in the zero point of the Cepheid PL
relation, the e†ect of reddening and metallicity on the
observed PL relations, the e†ects of incompleteness bias
and crowding on the Cepheid distances, and velocity per-
turbations about the Hubble Ñow on scales comparable to,
or larger than, the volumes being sampled. Since the overall
accuracy in the determination of is constrained by theseH0factors, we discuss each one of these e†ects in turn below.
For readers who may wish to skip the details of this part of
the discussion, we refer them directly to ° 8.7 for a summary.

8.1. Zero Point of the PL Relation
It has become standard for extragalactic Cepheid dis-

tance determinations to use the slopes of the LMC period-
luminosity relations as Ðducial, with the zero point of the
Cepheid period-luminosity relation tied to the LMC at an
adopted distance modulus of 18.50 mag (e.g., Freedman
1988). However, over the past decade, even with more accu-
rate and sensitive detectors, with many new methods for
measuring distances, and with many individuals involved in
this e†ort, the full range of the most of distance moduli to
the LMC remains at approximately 18.1È18.7 mag (e.g.,
Westerlund 1997 ; Walker 1999 ; Freedman 2000a ; Gibson
2000), corresponding to a range of 42È55 kpc.

For the purposes of the present discussion, we can
compare our adopted LMC zero point with other published
values. We show in Figure 5 published LMC distance
moduli expressed as probability density distributions, pri-
marily for the period 1998È1999, as compiled by Gibson
(2000). Only the single most recent revision from a given
author and method is plotted. Each determination is rep-
resented by a Gaussian of unit area, with dispersions given
by the published errors. To facilitate viewing the individual
distributions (Fig. 5, light dotted lines), these have been
scaled up by a factor of 3. The thicker solid line shows the
cumulative distribution.

It is clear from the wide range of moduli compared to the
quoted internal errors in Figure 5 that systematic errors
a†ecting individual methods are still dominating the deter-
minations of LMC distances. Some of the values at either
end of the distribution have error bars that do not overlap


