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Weak lensing

Refregier (2003, ARA&A 41, 645)



Weak lensing

® Potential gradients along the line-of-sight modify the
brightness, shape and position of distant galaxies

® Sensitive to distribution of mass (not just galaxies!)

® Statistical technique - needs large samples of galaxy
Images.

® |dea dates to lecture by Richard Feynman at Caltech
in 1964

® Effect first successfully detected (for galaxy clusters)
in 1990; then for “random” field in 2000



Mellie

Strong and weak lensing

1999,ARA&A 37,
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Simulation of galaxy cluster at z=0.15 and background galaxies at <z>=|



Quantifying the shear

Define quadrupole moments of light distribution:

Gij = / Iops(0)0;0,d%0

For a circularly symmetric source, we have

Qrx — Qyy and ({gry — 0
Define parameters € and &>:

- ez — ny €y = QQ:L’y
Qrex T Qyy Qra T Qyy

€1

These will both be zero for symmetric sources
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Source at xB

/ ; Image at xB

I Note that the radial
coordinate is here called X
Lensing Plane
-, 3&. -’Aﬁ
Us, today

(instead of r, or really D).

Coordinates in plane
perpendicular to X are

xi =0\,

Figure credit: Dodelson, Modern Cosmology



Geodesics and shear

To study the path of a light ray, we start again from the geodesic eqn:

d?zt  _,  dz®daf
dx2 —  Pda da
Here we are interested in the coordinates perpendicular to the line-of-sight,
' = yb"
dy  dy dt dx
We have A , ith — = —1/a(t
dx — dtdx dt fatt)

(a light ray travels a co-moving distance (c)dt/a in a
small time step dt)

dt
We also h — =P =p(1-U
e also have ™ p( )
S0 d_X__Z_?(l_q;)

d\  a



Geodesics and shear

To study the path of a light ray, we start again from the geodesic eqn:

dz" o da” da” i _ g
A2~ Pax da veX
. d
Using X__Pqi_w
dA a( )

we get, for the left-hand side of the geodesic equation:

d2i d2 z
d\? d)\Q(e X)
d p d .
= (1 —U)—5(1 — U)— (¢
SO W) (1= W) (6

and, for small ¥ and 0,




Geodesics and shear

Left-hand side of geodesic equation so far:
d?x? p d p d
d\2  adyady

For photons, we have E=p ~a’!, so pa ~ const:
d?z* D d pa d
d\2  ady a? dy

2d{1 d
X

(6" x)

(Hix)}

a? dy

Next, the right-hand side of the geodesic equation:

dz® dzP
P AN dA

de

d |1 d . .
) (92 :Fz
L? dx( X)}



Geodesics and shear

Next, the right-hand side of the geodesic equation:

d (1 d - dx® dz”
2 = | - = (92 _ an
{anx( )} 7Tdx dA

p dy
_ dx® dy dz® dy
Uy dy /) Udy dX

O

a P dy dy
We have previously encountered the Christoffel symbols:
i [ 40
[ = 0 ji + Ok jq) + 5]k§§



Geodesics and shear

2 o dr® d2P
Right-hand side (X derivatives): (g) (1= 0)T o dxX da;

Looking at x=B=0:

. Lo 1dv
using 0= 5
i i i )  dzY dg? 1 dw
we get (risht hand-side, A\ derivatives): 71 — (P92
2
p° dV 2
P
a? d:z:z( )

SO (Z—’)Q (1 — U)2T g — 22T (1 w)?

or (for Y=-0): T (ﬁf _ 4



Geodesics and shear

: : o p)2 0y da® dzf
] . i 1 —w)°I",
Right-hand side (X derivatives): ( ) )T ap dx dy
2
We found T, ary_ _de
dy da?
The other terms are T dtda? g4 9’
01 dy dy ‘ dy [X }
; dxd dz* do
I ik — :
dy dy da?

Collecting terms, combining with the left-hand side, and leaving out Y2 terms:

(eix)] _ % [aH% 0] +

d[ld

dy | a? dy



Geodesics and shear

The geodesic equation so far:

a? dy

The left-hand side expands to

(00| = 2H/@) 2050 + 1 56%)

d[ld

dy |a? dy

so the first terms on each side cancel, and we get

d? dd
= (07x) = 2

Note: if there is no potential gradient, then di(eix) _ ‘jfz
X X

The light ray travels along a straight line, as it should.

— const




Geodesics and shear

d? dd
= (0'x) =25~

Now integrate (twice) over X to find angle at source (Os):

Divide by X:

dy’ 4 const

d i _dmi_ XdCID( (X))

dCI)
_2/ dx”/ p dx + const

Outer integral: over all X’ from observer (X”=0) to source (X’=X).

Inner integral: over all X’ from observer (X’=0) up to X’=X"".

2 X XA (E(y
X Jo 0 dzx

We see that the constant must be 0!, since Bs=0' if there is no
potential (gradient)




Geodesics and shear

Outer integral: over all X’ from observer (X”"=0) to source (X”=X).

Inner integral: over all X’ from observer (X’=0) up to X’=X"".

2 (X XA (E(y
X Jo 0

x? P

We can change the order of integration, with X" then going

from X’ to X:
) ) 2 X / X 1
X Jo X’
2 [*  de(Z(x

(

d®(z(x"))
dx?

)

=0+= [ d . —
= [ = -

X

or

x. < xl .




The transformation matrix

We now define the transformation matrix Aj;
o 90
Y000

A

A maps angles at the source to those seen by the observer.

Usually written as
l—k—=m —72
A=
( —2 l—k+m )

with convergence K (describing the magnification) and
shear (Y1 ,Y2), describing the distortion.

The shear parameters are thus

71:_1411—1422 :_1—/f—71—(1_’f+71)

2 2

vo = —Ajo



The transformation matrix

Shear parameters:

_ _All — A22
71 9
Y2 = — A1
To determine Ajj we need the derivatives jgf_

: - - X d®(2(x’ !
Since 05 =0"+ 2/ dy’ (x(.x ) ( — X—)
0 da* X

these depend on the second derivatives of the potential,

d do(z) dz? d d®(Z) B d?®(7)
d07 dzt  dOF dad dzt  daidad

X

SO

_ 00 _ *od2eE() X’
Aij = 007 _5ij+2/0 dx dridei 1_;



The transformation matrix

Shear parameters: 1= - Y2 = — Ao

with

Lk * o dPe(E()) X'

Can also be written as

Aij — 0i = 1 ) = distortion tensor

We can now calculate the shear parameters, given the potential
(variations) along the line-of-sight.



Ellipticity as an estimator of shear

Still to do: connect the theoretical shear parameters (Y1 ,Y2) to the
observed ellipticities (€, and &)).

We start from the definitions:

Filling in the definitions of the g’s, we get

—

_ fngobs [true(55)9x9x — fd2§obs ]true( S)Hyé’y
f dze_;bs Itrue(gsexex + f dzgobs Itrue<55)9y9y

_ f d29_)obs Itrue(gS) [‘956‘9:13 — Hyey]
f d2§0bs Itrue(gS [ercc + Qy‘gy]

€1

- but mix of angles in the source and observer planes



Ellipticity as an estimator of shear

_ f d2670bs Itrue(é?) [6):1:(9:1: — Hyey]
f d2§0bs Itrue(é?) [(9:0933 + Hyey]

For small angles, we can write

003 aeg
x Hy

00~ 0 89

00 (‘9«9y

y _ 7S px ~7S ny

s 00 0 T Hov 0

In matrix form, y

Os =

SO



Ellipticity as an estimator of shear

o L 0ot Lrue(F) 020 — 0,6
f d290bs Itrue(‘gS) [03;933 + Hyey]

Filling in O = (A1) 005 + (A71),,05
0, = (A_l)xyﬁg + (A—l)nyyS

one gets

2y (AT — (ATyi(A )] [ 4205 e (0) 07504
1 — ~ ~ N
225 (AT )2i (A7 g + (A1) yi(A71)y] [ 4205 Tirue (05) 0505
For a circular source, the integrals are non-zero only for i=j (and
cancel out) so this reduces to

(A_l):zc:c R (A—l)zy
(A™)3e +2(A7H)2, + (473,

€1 —

We already see that this depends only on A.



Ellipticity as an estimator of shear

(A_l)?m: o (A_l);z;y
(A7H)2. +2(A71)3Z, + (475,

€1 —
In general, the inverse of a 2x2 matrix A is
—1
Al = Aew Aya — 1 Ayy  —Aye

The factor in front cancels out, so we only need

Al 1-rtm V2
Y2 l-—Kk—m
Filling this in above gives 271 (1 — k)

€1 —
L AR 3

and, for small distortions, €1 >~ 271

(a similar relation exists for € and Y2)



Weak lensing - summary

® Measurements of galaxy shapes (corrected for
instrumental effects) yield the ellipticity

parameters € and €;

® These are (very!) closely related (on average)
to the shear parameters, Y| and Y2

® The shear parameters depend on variations in
the potential along the line-of-sight (really
along the slightly curved light ray)



WVeak lensing - applications

® Mapping of mass in clusters (e.g. bullet cluster) -
independent of assumptions about virial
equilibrium, x-ray properties, etc.

® Statistical studies of large-scale structure - still in

its infancy, but several upcoming surveys (e.g.
Euclid, to be launched by ESA in 2019)

® Weak lensing measurements are sensitive to
intrinsic galaxy alignment - a whole research
discipline by itself.



Weak lensing and large scale structure

Figure 3 Shear map derived by ray-tracing simulations by Jain, Seljak & White
(2000). The size and direction of each line gives the amplitude and position angle of
the shear at this location on the sky. The displayed region is 1° x 1° for an SCDM
(Einstein-De Sitter) model. Tangential patterns about the overdensities corresponding
to clusters and groups of galaxies are apparent. A more complex network of patterns is
also visible outside of these structures. The root-mean-square shear is approximately
2% in this map (from Jain et al. 2000).

The only meaningful model-data
comparison is a statistical one.

Various shear statistics are being used.

For example, power-spectrum C;;

2

Zﬁi(lﬂj%(ﬁ» = (2m)?5(I = T)C)

1=1

- here, the Fourier components of
the shear are being used

Refregier (2003)



Weak lensing and large scale structure
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Figure 5 Example of an deep image in the cosmic-shear survey by Bacon, Refregier
& Ellis (2000). This corresponds to a 1 h exposure with the EEV camera on the William
Herschel telescope (WHT). The field of view is 8’ x 16’ and achieves a magnitude depth
of R ~ 26 (50 detection). The bright objects are saturated stars. The faint objects
comprise approximately 200 stars and approximately 2000 galaxies that are usable for

the weak-lensing analysis (from Bacon, Refregier & Ellis 2000). Refl‘egl er (200 3)



Weak lensing and large scale structure

SCDM
3 TCDM
10 ¢ ACDM

1(1+1)C,/(27)

Figure 4 Shear power spectrum for different cosmological models and for source
galaxies at z, = 1. The SCDM model is COBE normalized and thus has a higher
amplitude than the three cluster-normalized models ACDM, OCDM, and TCDM.
The thin dashed line shows the ACDM spectrum for linear evolution of structures.
Notice that for / > 1000 (corresponding approximately to angular scales 6 < 10")
the lensing power spectrum is dominated by nonlinear structures.

Different cosmological models
predict different power spectra.

Zﬁi(f)%w» = (2m)25(1 - U)C,

Refregier (2003)



Results - 2PCF
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Figure 4. 2PCF components £, and £_ (32) measured in
CFHTLenS. The dotted lines show the WMAP7 model prediction

(Komatsu et al 2011). From Kilbinger et al (2013). © 2013 Oxford
Universiy Press.

Kilbinger 2015, Rep. Prog. Phys. 78



Results - (Om

Flat ACDM
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Osg = amplitude of density perturbations at scale of 8 Mpc

(Qm = Matter density

Kilbinger 2015, Rep. Prog. Phys. 78



KiDS
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KIDS iImage quality

Better than |”
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KIDS vs. other surveys

CFHTLenS (MID J16)
WMAP9+4+ACTH4SPT

KiDS-450

Planckl1b

0.16

0.24

0.32
Qm

0.40
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results

Hildebrandt et al. (2015)



ESD (AY) [h7g Mg /pc?]
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KiDS & Emergent Gravity

— Dark matter (NFW)
— Point mass (EG)
— - Extended model (EG)

log(My/h=2Mg) = 10.32 1 log(My/h72Mg) = 10.74 -

Radius R [y kpc]

Mass profiles for early-
type galaxies apparently
(also) consistent with
Verlinde’s emergent
gravity theory.

Brouwer et al. (2016)



Euclid

Science goals:

- Use weak lensing to map distribution of dark matter and constrain
nature of dark energy (e.g. w, equation of state), test GR vs. alternative
theories of gravity, etc.

- BAOs (baryonic acoustic oscillations) - “wiggles” in the power-spectrum
in the distribution of baryonic matter

= Launch ~Q4 2020
= |.2 m primary mirror

— 0.2” resolution
- Image ~15000 deg?

(~1/3 of the sky)
- ~ 10’ galaxies to z~2




