So much for the general picture. Now let's look at the details!

The tightly coupled limit:

Before recombination (η^*), mean free path for a photon was much smaller than horizon.

Define *optical depth* as integral of $n_e \sigma_T a$ over (conformal) time:

$$\tau(\eta) \equiv \int_{\eta}^{\eta_0} \mathrm{d}\eta' n_e \sigma_T a$$

with derivative:

$$\frac{\mathrm{d}\tau}{\mathrm{d}\eta} \equiv \dot{\tau} = -n_e \sigma_T a$$

Tightly coupled limit corresponds to $\tau >> 1$.

The tightly coupled limit:

$$\tau(\eta) \equiv \int_{\eta}^{\eta_0} \mathrm{d}\eta' n_e \sigma_T a$$

Tightly coupled limit corresponds to $\tau >> 1$ (last scattering surface much smaller than horizon)

Higher-order moments of radiation field are then negligible: Θ "looks the same in every direction", apart from spatial and velocity dependencies. We only need to consider $[\Theta_0(\mathbf{x}, t)]$ - Monopole $[\Theta_1(\mathbf{x}, t)]$ - Dipole

(see Sect. 8.3.1 for formal derivation).

Multipole moments

Define the *I*th multipole moment of the temperature perturbations Θ as

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

The first three Legendre polynomials are defined as:

$$\mathcal{P}_{0}(\mu) = 1 \longrightarrow \Theta_{0} = \int_{-1}^{1} \frac{\mathrm{d}\mu}{2} \Theta(\mu)$$
$$\mathcal{P}_{1}(\mu) = \mu \longrightarrow \Theta_{1} = \frac{i}{2} \int_{-1}^{1} \mathrm{d}\mu \,\mu \,\Theta(\mu)$$
$$\mathcal{P}_{2}(\mu) = \frac{3\mu^{2} - 1}{2}$$

1

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$
$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

Next: obtain two new equations by multiplying by P_0 and P_1 and integrating over all μ , dropping higher-order moments.

*P*₀, left-hand side:

$$\int d\mu \,\dot{\Theta} + ik\mu\Theta = 2\dot{\Theta}_0 + ik \int_{-1}^1 d\mu \,\mu\Theta(\mu)$$
$$= 2\dot{\Theta}_0 + ik(-2i)\Theta_1$$
$$= 2\dot{\Theta}_0 + 2k\Theta_1$$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$
$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

 P_0 , left-hand side: $=2\dot{\Theta}_0+2k\Theta_1$

*P*₀, right-hand side:

$$\int_{-1}^{1} d\mu \left(-\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right] \right) = -\int_{-1}^{1} d\mu \dot{\Phi} - ik\int_{-1}^{1} d\mu\mu\Psi - \dot{\tau} \left[\int_{-1}^{1} d\mu(\Theta_0 - \Theta) + v_b \int_{-1}^{1} d\mu\mu \right]$$
$$-2\dot{\Phi} \qquad 0 \qquad -2\dot{\tau}\Theta_0 \qquad 2\dot{\tau}\Theta_0 \qquad 0$$

Equating I.h. and r.h. sides:

$$\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$
$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

 P_1 , left-hand side:

$$\int_{-1}^{1} d\mu \,\mu \left(\dot{\Theta} + ik\mu\Theta \right) = -2i\dot{\Theta}_1 + ik\int_{-1}^{1} d\mu\mu^2\Theta$$
$$= -2i\dot{\Theta}_1 + 2ik\left(\frac{1}{3}\Theta_0 - \frac{2}{3}\Theta_2\right) \qquad \text{Exercise}$$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$
$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

*P*₁, right-hand side:

$$\begin{split} \int_{-1}^{1} d\mu \,\mu \left(-\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_{0} - \Theta + \mu \mathbf{v}_{b} \right] \right) = \\ & - \int_{-1}^{1} d\mu\mu \dot{\Phi} - ik \int_{-1}^{1} d\mu\mu^{2}\Psi - \dot{\tau} \left[\int_{-1}^{1} d\mu\mu (\Theta_{0} - \Theta) + v_{b} \int_{-1}^{1} d\mu\mu^{2} \right] \\ & 0 \qquad - \frac{2}{3} ik\Psi \qquad 0 \qquad - 2\dot{\tau} i\Theta_{1} \qquad - \frac{2}{3} \dot{\tau} v_{b} \\ & = -\frac{2}{3} ik\Psi - \dot{\tau} \left[2i\Theta_{1} + \frac{2}{3} v_{b} \right] \end{split}$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

Equating I.h. and r.h. sides:

$$-2i\dot{\Theta}_1 + 2ik\left(\frac{1}{3}\Theta_0 - \frac{2}{3}\Theta_2\right) = -\frac{2}{3}ik\Psi - \dot{\tau}\left[2i\Theta_1 + \frac{2}{3}v_b\right]$$

Dividing by 2i and dropping the Θ_2 term:

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3}\right]$$

Moments of the Boltzmann equation for photons:

$$\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$$

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3}\right]$$

Two equations for Θ_0 and Θ_1 and their derivatives.

We would like to have a single equation for each multipole (and eliminate v_b).

For v_b, invoke the B.E. for baryons:

The Boltzmann equations

$$\dot{\tilde{\Theta}} + ik\mu\tilde{\Theta} + \dot{\tilde{\Phi}} + ik\mu\tilde{\Psi} = n_e\sigma_T a\left[\tilde{\Theta}_0 - \tilde{\Theta} + \mu\mathbf{v}_b\right]$$

- (Cold) dark matter: no collision terms; particles are non-relativistic. Density fluctuations: Velocity field: $\dot{\tilde{v}} + \frac{\dot{a}}{a}\tilde{v} + ik\tilde{\Psi} = 0$
- Baryons: Collision terms from Coulomb scattering;

$$\dot{\tilde{\delta}}_b + ik\tilde{v}_b + 3\dot{\tilde{\Phi}} = 0$$
$$\dot{\tilde{v}}_b + \frac{\dot{a}}{a}\tilde{v}_b + ik\tilde{\Psi} = n_e\sigma_T a\frac{4\rho_\gamma}{3\rho_b} \left[3i\tilde{\Theta}_1 + \tilde{v}_b\right]$$

- Neutrinos: similar to photons, but no collision terms

$$\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$$
$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3}\right]$$

For v_b , invoke the B.E. for baryons:

or

$$\begin{split} \dot{v}_b + \frac{\dot{a}}{a} v_b + ik\Psi &= n_e \sigma_T a \frac{4\rho_\gamma}{3\rho_b} \left[3i\Theta_1 + v_b \right] \qquad \begin{array}{l} n_e \sigma_T a &= -\dot{\tau} \\ v_b &= -3i\Theta_1 + \frac{R}{\dot{\tau}} \left(\dot{v}_b + \frac{\dot{a}}{a} v_b + ik\Psi \right) \qquad \text{where} \quad \frac{1}{R} \equiv \frac{4\rho_\gamma^{(0)}}{3\rho_b^{(0)}} \end{split}$$

Second term proportional to $1/\dot{\tau}$, i.e. small in tightly coupled regime. We thus expand using $v_b \sim -3i\Theta_1$:

$$v_b = -3i\Theta_1 + \frac{R}{\dot{\tau}} \left(-3i\dot{\Theta_1} - 3i\frac{\dot{a}}{a}\Theta_1 + ik\Psi \right)$$

Insert in B.E. for photons (first moment):

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{i}{3} \left\{-3i\Theta_1 + \frac{R}{\dot{\tau}} \left(-3i\dot{\Theta}_1 - 3i\frac{\dot{a}}{a}\Theta_1 + ik\Psi\right)\right\}\right]$$

Acoustic oscillations $\dot{\Theta}_{0} + k\Theta_{1} = -\dot{\Phi} \\ \dot{\Theta}_{1} - \frac{k}{3}\Theta_{0} = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_{1} - \frac{i}{3} \left\{-3i\Theta_{1} + \frac{R}{\dot{\tau}} \left(-3i\dot{\Theta}_{1} - 3i\frac{\dot{a}}{a}\Theta_{1} + ik\Psi\right)\right\}\right] \\ = \frac{k\Psi}{3} - R\dot{\Theta}_{1} - R\frac{\dot{a}}{a}\Theta_{1} + R\frac{k}{3}\Psi$

Collecting the terms proportional to Θ_0 , Θ_1 , $\dot{\Theta}_1$, we get

$$\dot{\Theta}_1 + \frac{R}{(1+R)}\frac{\dot{a}}{a}\Theta_1 - \frac{k}{3(1+R)}\Theta_0 = \frac{k\Psi}{3}$$

Differentiating $\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$ we get $\ddot{\Theta}_0 + k\dot{\Theta}_1 = -\ddot{\Phi}$

And we can eliminate $\dot{\Theta}_1$:

$$\ddot{\Theta}_0 + k\left(\frac{k\Psi}{3} - \frac{R}{(1+R)}\frac{\dot{a}}{a}\Theta_1 + \frac{k}{3(1+R)}\Theta_0\right) = -\ddot{\Phi}$$

Acoustic oscillations $\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3}\right]$$

And we can eliminate $\dot{\Theta}_1$:

$$\ddot{\Theta}_0 + k\left(\frac{k\Psi}{3} - \frac{R}{(1+R)}\frac{\dot{a}}{a}\Theta_1 + \frac{k}{3(1+R)}\Theta_0\right) = -\ddot{\Phi}$$

Use $\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$ once again to eliminate $\Theta_1 = -(\dot{\Phi} + \dot{\Theta}_0)/k$

$$\ddot{\Theta}_0 + k\left(\frac{k\Psi}{3} + \frac{R}{(1+R)}\frac{\dot{a}}{a}\frac{(\dot{\Phi} + \dot{\Theta}_0)}{k} + \frac{k}{3(1+R)}\Theta_0\right) = -\ddot{\Phi}$$

Collecting the Φ and ψ terms in $F(k, \eta)$, introducing the sound speed $c_s = \sqrt{1/3(1+R)}$ and re-arranging, we finally get an equation for the *monopole* oscillations:

$$\ddot{\Theta}_0 + \frac{R}{(1+R)}\frac{\dot{a}}{a}\dot{\Theta}_0 + k^2c_s^2\Theta_0 = F(k,\eta)$$

Monopole oscillations:

 $m\ddot{x} = F_0 - k_1 x - k_2 \dot{x}$

$$\ddot{\Theta}_0 + \frac{R}{(1+R)}\frac{\dot{a}}{a}\dot{\Theta}_0 + k^2c_s^2\Theta_0 = F(k,\eta)$$

Note similarity to classical (damped, forced) harmonic oscillator! This justifies the "spring analogies" that we discussed earlier.

$$\ddot{x} + \frac{k_2}{m}\dot{x} + \frac{k_1}{m}x = F_0/m$$

$$\int_{-1}^{2} \int_{-1}^{0} \int_{-1}^{0$$

Solutions

Monopole at recombination in a standard CDM Universe

Dipole perturbations

 Θ_1 is out of phase with Θ_0 :

The dipole ("velocity") is small at maximum compression/rarefaction of the monopole, and vice versa.

Damping

Perturbations on small scales (large k) are "washed out" by scattering of photons off of free electrons: Photon Diffusion

Mean free path:

$$\lambda_{\rm MFP} \approx (n_e \sigma_T)^{-1}$$

Number of scatterings in a Hubble time ~ $n_e \sigma_T H^{-1}$

Mean distance travelled by photon (random walk)

$$\lambda_D \sim \lambda_{\rm MFP} \sqrt{n_e \sigma_T H^{-1}} \sim (\sqrt{n_e \sigma_t / H})^{-1}$$

- Scale where damping becomes important depends (inversely) on baryon density

Damping

Late epochs, close to recombination:

 λ_{MFP} increases as n_e decreases.

Scott & Smoot 2004

We have learned how to evolve an initial spectrum of perturbations forward in time, obtaining equations for:

- Mono- and dipoles of photon perturbations (Θ_0, Θ_1)
- Density perturbations of dark and baryonic matter (δ , δ_b)
- The potential and curvature terms (Ψ , Φ)

We have analysed the behaviour of Θ_0 , Θ_1 in the tightly coupled limit, i.e., until recombination.

But how do the *inhomogeneities* at recombination translate into the *anisotropies* in the CMB observed today?

How do the *inhomogeneities* at recombination translate into the *anisotropies* in the CMB observed today?

Start again from the B.E. for photons:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$$

We are now interested in the high order moments of Θ that are visible as anisotropies in the CMB *today*.

So we need to
(1) Evolve Θ forward until today
(2) Compute the multipole moments, Θ_I.

 $\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 - \Theta + \mu\mathbf{v}_b\right]$

Start by subtracting $\dot{\tau}\Theta$ from both sides:

$$\dot{\Theta} + (ik\mu - \dot{\tau})\Theta = -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 + \mu\mathbf{v}_b\right]$$

Then the left-hand side can be written

$$e^{-ik\mu\eta+\tau} \frac{\mathrm{d}}{\mathrm{d}\eta} \left[\Theta e^{ik\mu\eta-\tau}\right]$$

On the **right-hand side** we define the *source function*:

$$\tilde{S} \equiv -\dot{\Phi} - ik\mu\Psi - \dot{\tau}\left[\Theta_0 + \mu\mathbf{v}_b\right]$$

Multiply both sides by $e^{ik\mu\eta-\tau}$, then integrate over η

Integrate over conformal time from $\eta_{init} = 0$ to η_0 (today):

$$\Theta(\eta_0) \simeq \int_0^{\eta_0} \mathrm{d}\eta \tilde{S} e^{ik\mu(\eta - \eta_0) - \tau(\eta)}$$

To calculate the moments, we then need to evaluate the usual integral,

$$\Theta_l = \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

That is,

$$\Theta_l = \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \int_0^{\eta_0} \mathrm{d}\eta \left\{ -\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_0 + \mu \mathbf{v}_b\right] \right\} e^{ik\mu(\eta - \eta_0) - \tau(\eta)}$$

After performing the integral over angles, the source function can be rewritten as

$$S(k,\eta) = g(\eta)[\Theta_0 + \Psi] + \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{iv_b g(\eta)}{k}\right) + e^{-\tau} \left[\dot{\Psi}(k,\eta) - \dot{\Phi}(k,\eta)\right]$$

where *g* is the *visibility* function:

$$g(\eta) \equiv -\dot{\tau}e^{-\tau}$$

Then we get

$$\Theta_l = \int_0^{\eta_0} S(k,\eta) j_l [k(\eta_0 - \eta)] \mathrm{d}\eta$$

where $j_l(x)$ is the spherical Bessel function of order *l*.

The visibility function

 $\dot{\tau} = -n_e \sigma_T a$

Scattering rate, large at high z (large τ)

 e^{-t} Probability that a photon escapes - small for large τ

 $g(\eta)$ is strongly peaked around recombination.

Dodelson, Modern Cosmology.

Multipoles

$$S(k,\eta) = g(\eta)[\Theta_0 + \Psi] + \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{iv_b g(\eta)}{k}\right) + e^{-\tau} \left[\dot{\Psi}(k,\eta) - \dot{\Phi}(k,\eta)\right]$$

Expanding *S* and integrating the middle term by parts,

$$\begin{split} \Theta_l &= \int_0^{\eta_0} \mathrm{d}\eta \, g(\eta) [\Theta_0(k,\eta) + \Psi(k,\eta)] j_l[k(\eta_0 - \eta)] \\ &- \int_0^{\eta_0} \mathrm{d}\eta \, g(\eta) \left(\frac{iv_b(k,\eta)}{k}\right) \frac{\mathrm{d}}{\mathrm{d}\eta} j_l[k(\eta_0 - \eta)] \\ &+ \int_0^{\eta_0} \mathrm{d}\eta e^{-\tau} \left[\dot{\Psi}(k,\eta) - \dot{\Phi}(k,\eta)\right] j_l[k(\eta_0 - \eta)] \end{split} \right\} \begin{aligned} & \mathsf{La} \\ &\mathsf{Sa} \end{aligned}$$

Terms weighted by $g(\eta)$ sharply peaked near recombination

Late-time contributions from changing potentials: *Sachs-Wolfe* effect

The visibility function and integrands

 $\eta(\texttt{Mpc})$

 $g(\eta)$ is sharply peaked near recombination, at η^* corresponding to *z*~1100.

Other factors vary much more slowly.

Approximating $g(\eta) \sim \delta(\eta - \eta^*)$, we get:

$$\begin{split} \Theta_l(k,\eta_0) &= [\Theta_0(k,\eta^*) + \Psi(k,\eta^*)] j_l[k(\eta_0 - \eta^*)] \\ &+ 3\Theta_1(k,\eta^*) \left(j_{l-1}[k(\eta_0 - \eta^*)] - \frac{l+1}{k(\eta_0 - \eta^*)} j_l[k(\eta_0 - \eta^*)] \right) \\ &+ \int_0^{\eta_0} \mathrm{d}\eta e^{-\tau} \left[\dot{\Psi}(k,\eta) - \dot{\Phi}(k,\eta) \right] j_l[k(\eta_0 - \eta)] \end{split}$$

Note: Θ_1 has three types of terms:

- Contributions from the *monopole* of the photon perturbations around η^* . Note that the sum ($\Theta_0 + \psi$) enters photons have to "climb out" of the potentials.
- Contributions from the dipole material moving into/out of perturbations
- Late-type modifications of Θ_I by decaying potentials
- The Bessel functions "select" modes with $k\eta > l$.

One last thing..

We have derived expressions for the *multipoles* Θ_1 of the photon perturbations today.

However, observers typically measure the C_i 's, i.e. the (squared) coefficients of the spherical harmonic expansion of the temperature fluctuations.

Luckily, the transformation is relatively straight forward:

$$C_l = \frac{2}{\pi} \int_0^\infty \mathrm{d}k \, k^2 P(k) \left| \frac{\Theta_l(k)}{\delta_{\mathrm{DM}}(k)} \right|^2$$

P(k) is the power spectrum of the DM perturbations and $\delta_{DM}(k)$ are the corresponding Fourier coefficients.

(see chapter 8.5.2 in "Modern Cosmology" for the details).

CAMB Web Interface

Supports the January 2011 Release

Most of the configuration documentation is provided in the sample parameter file provided with the application.

This form uses JavaScript to enable certain layout features, and it uses Cascading Style Sheets to control the layout of all the form components. If either of these features are not supported or enabled by your browser, this form will NOT display correctly.

Actions to Perform

🗹 Scalar C _l 's	
Vector C _l 's	
📃 Tensor C _l 's	

Do Lensing

۲	Linear
0	Non-linear Matter Power (HALOFIT)
0	Non-linear CMB Lensing (HALOFIT)

Sky Map Output:	None ÷
-----------------	--------

Vector C/s are incompatible with Scalar and Tensor C/s. The Transfer functions require Scalar and/or Tensor C/s.

The HEALpix synfast program is used to generate maps from the resultant spectra. The random number seed governs the phase of the a_{lm}'s generated by synfast. The default of zero causes synfast to generate a new see from the system time with each run. Specifying a fixed nonzero value will return fixed phases with successive runs.

Maximum Multipoles and k*eta						
	Scalar	_	Tensor			
	2000	max	1500	Imax		
	4000	k*eta _{max}	3000	k*eta _{max}		
			Tensor limit	s should be les	s than	
			or equal to t	the scalar limit	s.	
Cosmological Parameters						
Use Physical Parameters? Yes =	0.0226	ո _ս ի²			0.24	Helium Fraction
70 Hubble Constant	0.228	Ω _c h ²			3.04	Massless Neutrinos
2.725 T _{cmb}	0	Ω _v h ²			0	Massive Neutrinos
	0	R _k			-1	Eqn. of State
	Neutrino	mass splittings			1	Comoving Sound Speed
	1	# Eigenstates				
	U	Degeneracies				
	1	Mass Fractions				

The Equation of State entry is the effective equation of state parameter for dark energy and is assumed constant. The Comoving Sound Speed parameter is the constant comoving sound speed of the dark energy; 1=quintessence.

Setting Degeneracies to zero sets the mass degeneracies parameter to massive neutrinos. Otherwise this should be a space separated list of values, one per eigenstate. Fractions should be a space separated list indicating the fraction of $\Omega_{\nu}h^2$ accounted for by each eigenstate.

Reionization

Include Reionization? Yes 🗧					
Use Optical	Depth?	No	•		
11	Recshift	t			
0.5	Wicth o	fTr	ansi	tion	
1	Ionizati	on f	Frad	tion	

Power Spect	rum
1	Number
2.46e-9	Scalar Amplitude
0.96	Scalar Spectral Index
0	Scalar Run Count
0	Tensor Spectral Index
1	Initial Ratio
The rato is the power spectrue use the scalar	of of the initial tensor/scalar m amplitudes. The vector modes settings.

Supply 'Number' values in each after the first, separated by spaces.

Initial Scalar Perturbation Mode

\$

Adiabatic

For Vector Modes:

Regular (Neutrino Vorticity Mode) *

Or.. download the (Fortran 90) code yourself: http://camb.info

```
.
                            CAMB — vi params.ini — 80×32
                 = 2200
l max scalar
                                                                              白
#k eta max scalar = 4000
# Tensor settings should be less than or equal to the above
l_max_tensor
                 = 1500
k_eta_max_tensor = 3000
#Main cosmological parameters, neutrino masses are assumed degenerate
# If use_phyical set physical densities in baryons, CDM and neutrinos + Omega_k
use_physical = T
ombh2
              = 0.0226
      = 0.112
omch2
          = 0.00064
omnuh2
             = 0
omk
hubble
       = 70
#effective equation of state parameter for dark energy
              = -1
w
#constant comoving sound speed of the dark energy (1=quintessence)
cs2_lam
              = 1
#varying w is not supported by default, compile with EQUATIONS=equations_ppf to
use crossing PPF w-wa model:
#wa
               = 0
##if use_tabulated_w read (a,w) from the following user-supplied file instead of
above
#use tabulated w = F
#wafile = wa.dat
[] if use_physical = F set parameters as here
#omega_baryon = 0.0462
```

Or.. download the (Fortran 90) code yourself: http://camb.info

🔍 🕘 📄 🔄 CAN	IB — vi params.ini — 80×32
l_max_scalar = 2200	
#k_eta_max_scalar = 4000	
# Tancan cattings should be loss	
# Tensor Settings should be less	Alr:Software/LAMB> ./camb params.ini
k = 1000	Kelon redshift = 10.713
	$Um_D F^2 = 0.022000$
#Main cosmological parameters ne	$0m_{\rm c} m_{\rm c} = 0.112000$
# If use phyical set physical den	$0m_1 ambda = 0.724000$
use physical $= T$	$\int \frac{d}{dt} = 0.724000$
ombh2 = 0.0226	$0m_{1}$ = 0.000000 $0m_{1}$ = 0.276000
omch2 = 0.112	100 theta (CosmoMC) = 1.039532
omnuh2 = 0.00064	N eff (total) = 3.046000
omk = Ø	1 nu, q= 1.0153 m_nu*c^2/k_B/T_nu0= 353.71 (m_nu= 0.060 eV)
hubble = 70	Reion opt depth = 0.0900
	Age of universe/GYr = 13.777
#effective equation of state para	zstar = 1088.72
₩ = -1	r_s(zstar)/Mpc = 146.38
#constant comoving sound speed of	100*theta = 1.039840
$cs2_lam = 1$	DA(zstar)/Gpc = 14.07762
Accession in the second second builds	zdrag = 1059.70
#varying w is not supported by de	r_s(zdrag)/Mpc = 149.01
use crossing PPF w-wa model:	k_D(zstar) Mpc = 0.1392
$\#$ wu = \emptyset ##if use tabulated w read (a w) f	$100*$ theta_D = 0.1602/1
above	$Z_EV(1TV_NU=1) = 3210.47$
≠use tabulated w = E	K_EQ MpC (LT V_NU=I) = 0.009817 100*+bota E0 0.947727
#wafile = wa.dat	100° theta_EQ = 0.047757 100° theta_rs E0 = 0.467101
	$f_{au} = 0.407101$ $f_{au} = 284.95$ $f_{au} = 14362.3$
<pre>if use_physical = F set paramete</pre>	at z = 0.000 sigma8 (all matter) = 0.7781
#omega_baryon = 0.0462	at z = 0.000 sigma8/2 vd/sigma8 = 0.3812
	Note: The following floating-point exceptions are signalling: IEEE UNDERFLOW FLA
	G
	Air:Software/CAMB>

CAMB output - examples: the **CMB** power-spectrum

CAMB output - examples: the **matter** power-spectrum

Planck collaboration, 2015, http://arxiv.org/pdf/1502.01589v2.pdf

Table 4. Parameter 68 % confidence limits for the base Λ CDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext," BAO+JLA+ H_0). Nuisance parameters are not listed for brevity (they can be found in the *Planck Legacy Archive* tables), but the last three parameters give a summary measure of the total foreground amplitude (in μ K²) at ℓ = 2000 for the three high- ℓ temperature spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_b h^2$).

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\overline{\Omega_{\mathrm{b}}h^2}$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
100θ _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
$n_{\rm s}$	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
$\overline{H_0 \ldots \ldots \ldots \ldots \ldots}$	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
Ω_{Λ}	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
σ_8	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086
$\sigma_8\Omega_{ m m}^{0.5}\ldots\ldots\ldots\ldots$	0.466 ± 0.013	0.4521 ± 0.0088	0.4514 ± 0.0066	0.4668 ± 0.0098	0.4553 ± 0.0068	0.4535 ± 0.0059
$\sigma_8 \Omega_{ m m}^{0.25}$	0.621 ± 0.013	0.6069 ± 0.0076	0.6066 ± 0.0070	0.623 ± 0.011	0.6091 ± 0.0067	0.6083 ± 0.0066
Z _{re}	$9.9^{+1.8}_{-1.6}$	$8.8^{+1.7}_{-1.4}$	$8.9^{+1.3}_{-1.2}$	$10.0^{+1.7}_{-1.5}$	$8.5^{+1.4}_{-1.2}$	$8.8^{+1.2}_{-1.1}$
$10^9 A_s$	$2.198\substack{+0.076\\-0.085}$	2.139 ± 0.063	2.143 ± 0.051	2.207 ± 0.074	2.130 ± 0.053	2.142 ± 0.049
$10^9 A_8 e^{-2\tau}$	1.880 ± 0.014	1.874 ± 0.013	1.873 ± 0.011	1.882 ± 0.012	1.878 ± 0.011	1.876 ± 0.011
Age/Gyr	13.813 ± 0.038	13.799 ± 0.038	13.796 ± 0.029	13.813 ± 0.026	13.807 ± 0.026	13.799 ± 0.021
Z* • • • • • • • • • • • • • • • • • • •	1090.09 ± 0.42	1089.94 ± 0.42	1089.90 ± 0.30	1090.06 ± 0.30	1090.00 ± 0.29	1089.90 ± 0.23
<i>r</i> _*	144.61 ± 0.49	144.89 ± 0.44	144.93 ± 0.30	144.57 ± 0.32	144.71 ± 0.31	144.81 ± 0.24
$100\theta_*$	1.04105 ± 0.00046	1.04122 ± 0.00045	1.04126 ± 0.00041	1.04096 ± 0.00032	1.04106 ± 0.00031	1.04112 ± 0.00029
Zdrag • • • • • • • • • • • • • • • • • • •	1059.57 ± 0.46	1059.57 ± 0.47	1059.60 ± 0.44	1059.65 ± 0.31	1059.62 ± 0.31	1059.68 ± 0.29
<i>r</i> _{drag}	147.33 ± 0.49	147.60 ± 0.43	147.63 ± 0.32	147.27 ± 0.31	147.41 ± 0.30	147.50 ± 0.24
<i>k</i> _D	0.14050 ± 0.00052	0.14024 ± 0.00047	0.14022 ± 0.00042	0.14059 ± 0.00032	0.14044 ± 0.00032	0.14038 ± 0.00029
z_{eq}	3393 ± 49	3365 ± 44	3361 ± 27	3395 ± 33	3382 ± 32	3371 ± 23
<i>k</i> _{eq}	0.01035 ± 0.00015	0.01027 ± 0.00014	0.010258 ± 0.000083	0.01036 ± 0.00010	0.010322 ± 0.000096	0.010288 ± 0.000071
$100\theta_{s,eq}$	0.4502 ± 0.0047	0.4529 ± 0.0044	0.4533 ± 0.0026	0.4499 ± 0.0032	0.4512 ± 0.0031	0.4523 ± 0.0023
f_{2000}^{143}	29.9 ± 2.9	30.4 ± 2.9	30.3 ± 2.8	29.5 ± 2.7	30.2 ± 2.7	30.0 ± 2.7
$f_{2000}^{143 \times 217}$	32.4 ± 2.1	32.8 ± 2.1	32.7 ± 2.0	32.2 ± 1.9	32.8 ± 1.9	32.6 ± 1.9
f_{2000}^{217}	106.0 ± 2.0	106.3 ± 2.0	106.2 ± 2.0	105.8 ± 1.9	106.2 ± 1.9	106.1 ± 1.8

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015
$100\theta_{\rm MC}$	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032
au	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034
$n_{\rm S}$	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049
$\overline{H_0 \ldots \ldots \ldots \ldots \ldots \ldots}$	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66
Ω_{Λ}	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091
$\Omega_{\rm m}$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029
σ_8	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013
$\sigma_8\Omega_{ m m}^{0.5}$	0.466 ± 0.013	0.4521 ± 0.0088	0.4514 ± 0.0066	0.4668 ± 0.0098
$\sigma_8\Omega_{ m m}^{0.25}$	0.621 ± 0.013	0.6069 ± 0.0076	0.6066 ± 0.0070	0.623 ± 0.011
$z_{\rm re}$	$9.9^{+1.8}_{-1.6}$	$8.8^{+1.7}_{-1.4}$	$8.9^{+1.3}_{-1.2}$	$10.0^{+1.7}_{-1.5}$
$10^9 A_8 \ldots \ldots \ldots$	$2.198^{+0.076}_{-0.085}$	2.139 ± 0.063	2.143 ± 0.051	2.207 ± 0.074
$10^9 A_{\rm s} e^{-2\tau}$	1.880 ± 0.014	1.874 ± 0.013	1.873 ± 0.011	1.882 ± 0.012
Age/Gyr	13.813 ± 0.038	13.799 ± 0.038	13.796 ± 0.029	13.813 ± 0.026
Z* • • • • • • • • • • • • • • • • • • •	1090.09 ± 0.42	1089.94 ± 0.42	1089.90 ± 0.30	1090.06 ± 0.30

Constraints on cosmological parameters from different techniques.

More reading:

- Dodelson, S., 2003: Modern Cosmology (Academic Press)
- Hu, W. & Dodelson, S. 2002: Cosmic Microwave Background Anisotropies, ARA&A 40, 171:.
- Challinor, A, 2005: Cosmic Microwave Background Anisotropies, in: The Physics of the Early Universe (<u>http://</u> <u>adsabs.harvard.edu/abs/2005LNP...653...71C</u>)
- Hu, W. et al. 1997: The Physics of Microwave Background Anisotropies, Nature 386, 37 (<u>http://adsabs.harvard.edu/abs/1997Natur.386...37H</u>)
- Many recent Planck papers