The Boltzmann equation for photons

The left-hand side of the Boltzmann equation can now be written in terms of
partial derivatives for the seven independent variables (¢, x!, p):

df _or  9f da' (0f dp
dt ot oxt dt \9p dt

magnitude of direction of
momentum momentum

The equilibrium distr. function (Bose-Einstein) depends only on magnitude of p,
not the direction (isotropy).

Therefore 9f/dp' is non-zero only for perturbed f, i.e. first order.
Similarly, dp/dtis zero for non-perturbed metric. So the product,

of it
opt  dt

IS a second-order term and can be neglected.




The Boltzmann equation for photons

)
We are left with: ﬁ — 8f | af' . dz | af dp
dt ot Ox* dt Op dt
Now consider the second term: dax* B dz? d)\
dt  d\ dt
From definition of four-momentum,
dzV dt da’ -
_— = — = PO d — PZ
dx  dx o D)
We already found that P’ =p(1 - ")
Similarly, for i=1..3, one finds P!~ pﬁiﬂ
a
So — :]i( —®)/(1-V)=—(1+T — D)

dt ~ PO a a



The Boltzmann equation for photons

We are left with: ﬁ _ of | af' . da* | df dp
dt ot Ox* dt Op dt
dz? ]3
g” E(l + U — P)

Again, df/dx is zero (findependent of x') for the unperturbed solution, so
the terms involving (0f/ox')(®) and (df/dx')(W) are second-order and can be
neglected.

Then

df _of  p'of  Ofdp
dt Ot a ozt Opdt

Next: dp/dt ...



The Boltzmann equation for photons

We now need the geodesic equation, d2 _ dr® d°
d 2 T2 dx d)
dz#
Using the definition of P, Pt =
° B
- _ B
i FaﬁP P

After some manipulation (exercise), one finds

U pov peps
d—p—p{a P L 0 }—rgﬁ (1+27)

dt ot a Oz’ D

Evaluate Christoffel symbol, cancel more 2nd order terms (exercise)

@——p(Hlan D 8\11)

dt ot a 0x’



The Boltzmann equation for photons

Inserting in the Boltzmann eqn, the left-hand side looks as follows:

But we need a more concrete form of the distribution function f(t,x,p) to get further



Back to the distribution function

Unperturbed Bose-Einstein distribution:

1
e

Introduce perturbations of temperature,
O(z, p,t) = 0T (z,p,1)/T(1)

so that

—1
A p E=p for photon
) = —1 p for photons
f(xjp’p’ ) |:eXp{1 (t)[l | @(Qf,ﬁ,t)]} :| (c=1)

Expanding to first order in © gives (01 = TO)

f()

o)
OT ©

frf+T—




The Boltzmann equation for photons

Left-hand side of Boltzmann equation:

df _Of 9 Of _ Of [, 0 i Ov
i ot " aor Foap | T ot T q o

Perturbed distribution function:

(0)
frf® 26
Op

The zero-order terms (no dep. on ©, ¢, Y, Xx) vyield

ﬂ B of0) of0)

— H
dt |, ot b op

Equilibrium - collision terms in B.E. vanish

=0




The Boltzmann equation for photons

The zero-order terms (no dep. on ©, ¢, Y, x) yield

df of0) of0)

- H
|, ot Fop

Equilibrium - collision terms in B.E. vanish

=0

Using that T0f90T = -pdf9dp (again), we have

of® of0dr  9fO pdr

ot oT dt Op T dt

SO

dr/dt  da/dt] 0f© .
T a op

] .ﬂi




The Boltzmann equation for photons

The first-order terms are (exercise):

Collision terms due to
Compton scattering

= Cf]

B ot adxt Ot a Ozt

df of9 [o6 p'oe 0% P OV
dt |, b op

Now, the collision terms on the right-hand side.

Relevant physical process: Compton scattering,
e (q) +v(p) < e (¢) +7()

for electron momenta g, g’ and photon momenta p, p’.



Collision terms for photons

Compton scattering:

e (q) +v(p) < e (¢') +~v(p')

Schematically, the collision terms can be written as

d];(f )~ ) = > [Amplitudel” {fe(¢) £ (') H fe (@) f (D)

“production” of “destruction” of
photons with photons with
momentum p momentum p

Sum is written over all g, @', p’, but energy and momentum must be conserv



Collision terms for photons

More formally, we have

Exercise 5 Amplitude
d*q g’ d’p/ >
C — 27 )4 Integrals over all q,
U0, ) s | s | @R 8
3(= 1L~ 07 . I / Momentum/energy
X0°(P+q—p —q) xOE()+ Eclq) —E(@) — Ee(q)] oo
X [ fe (q_;)f(g;’) — (D (D)) “Rate equation” (photons entering

- leaving this bin of f(p))

Notes:
Factors of 7/E come from integration over E - taking into account that E and momenta
are related through E? = p? + m?, so that

d3p
/dSﬁ/ dFE 5(E2 —p? — m2) = / 2E(Z;9) (see also F. Saueressig’s lectures)

Amplitude ImI2 depends on physics of Compton scattering



Collision terms for photons

First, concentrate on the integrals on the first line:

d3q d3¢ d3p!
/ (2W)32Ee(q)/ (2ﬂ)32Ee(q’>/ (2m)°2E(p")

The electrons are non-relativistic at the epochs of interest: T ~ 3000 K at
epoch of recombination, so Eyi, = (3/2)kT ~ 0.26eV < m.c*(~ 0.5 MeV)

N

We can therefore replace Eq(q) with me in the denominators (setting c=1

/ B7 1 /d3cf
(2m)32Ec(q) ~ 2me J (2m)3

For photons, we have E =p, so

— —

/ <2w>§32%<p'> - / <2i§§;p/




Collision terms for photons

First, concentrate on the integrals on the first line:

/ (ZW)Sdzge(Q)/ (QW);i;ge(q/>/ (ﬁ)gg(p’) / 2m) (31;; ~ 2m, / d3*

/ <2w>izE< >_/ <2w>52p

Inserting the integrals from the box, we then get:

N S B X B
U0 = | oy | Gomr | i M

X 53(ﬁ+ 67_29_; — q_;) X 0|E(p) + Ec(q) — E(Z?/) — Ee(q/)]

—
/

X [fe(q )f(f;/) o fe<cj>f<ﬁ)]



Collision terms for photons

N O Y B S B S >
U0 = sz | ary | oo | i M
_|_

Using the momentum delta function to evaluate the q’ integral, we get

IO = g5 | o | ooy M

B 8m?2p(2m)3 27)3p/

— —
/

X 0E(p) + Ee(q) —E@') —Ec(P+q—1)] X [fe(T+T—0")f@) — fe(a) f(p)]
- note that g’ has now been eliminated.



Collision terms for photons

Clf (@) = — 21 /‘hff(dﬂ,mw

8m2p(2m)3 | (2m)3 ) (2m)3p

—

x S[E(p) + Ee(q) — E(Y)) — E(F+ 7 — )] x [fe(F+T— D) f(0) — fe(a) f(p)]

- note that g’ has now been eliminated!

q2

2M,

Next, energy conservation: Photons: E=p, and (non-relativistic) electrons: £ = m. +

Also, since g~q’ (change in electron momentum is small), we can replace
fe(p+g-p’) with fg(q) in the last factor. This leads to

Ol = g [Ty [t 1M

d(p—p)q-(p—p)
op’ Me

X{Npﬂ)+



Collision terms for photons

Ol = g [ CT [t 1M

X {5(pp’)+ 85(];]9/]9’)@-(];]9’)} < [f(p) — f(P)

Now, we need the amplitude term, IMl2:

For simplicity, we simply assume it to be constant: ]/\/l\2 ~ 8morm?

(not strictly correct; depends on the angle between p and p’, and on polarization,
but final error is small)

Then we have

e B R T [6<p—p'>+ O LTI (1)~ £




Collision terms for photons
o) =2 | d3 [ [5<pp'>+ g@f )] < F@) ~ F(P)

Only two terms depend on g:

The integral of fo(g) over all g is the total electron density,

@ o
[ Grpa=n

The integral of g¢/me = v is the mean (bulk) electron velocity,

feld) 4 5.
EE

And only the integral over p’is left:
22N d3p/ y [ . Jd _ -

i) = Tt [




Collision terms for photons

Integral over p’:

lr) = 220 [ P (st 9+ i (72| x 1569) — )

Integrating by parts takes care of the & function (exercise).
Re-introduce our expansion of f(p).

Define the monopole of the temperature perturbations as

1
O0(7,1) = — / A0 (5, 7, 1)

s

This finally gives the result:

Clfp)=-p neor O — O(p) + P - U]




Putting it together:

Left-hand side of Boltzmann eq. (time derivative of distribution function)

df of% [oe p'oe 0P POV
dt |, b Op

B ot adx* Ot a O

= Cf]

Right-hand side (collision terms):
o f0)
Op

Clf(p)| = —p neor (O — O(p) + p - vp)

Combining the two, we finally have

00 poeO 9% pl OV
ot  aOdxi Ot a Oz

=neor [Og — O + p - V|



The Boltzmann equation for photons

00 P oe 9D P Ov

= neor O — O + p - vy

ot a Ox* Ot a Ox*
Replacing t with the conformal time (cn = comoving horizon),
t dt, d/r]
— — =1/a(t
= = = 1/a(1)
00 909dn O
so that — = = — etc..
ot on ot «a

the Boltzmann equation for photons finally becomes




The Boltzmann equation for photons

Partial differential equation, coupling variations in femperature distribution
(©) to variations in the potential ({), curvature (p) and velocity field (vb).

Simpler to solve in Fourier space, since
(a) partial derivatives are replaced by multiplication: F [f'(x)] (k) = ikF [f(x)] (k)

(b) small amplitude Fourier modes evolve independently.

Then we get




Ingredients and their coupling

Dark
Matter

Compton
scattering

scattering

Based on Dodelson, Modern Cosmology



B.E. for other components

We have derived the Boltzmann equation for photons.

Equivalent equations for

- (Cold) dark matter (§4.5): no collision terms; particles are non-relativistic.
No specific form for distrib. function assumed, use moments of B.E:

Density fluctuations: 5 + 1kv + 3&) =0
s a4 =
Velocity field: v+ —v+1kV =0
a

- Baryons (§4.6): Collision terms from Compton scattering;

Op + ikty + 3D = 0

L N 4 N
5+ 26, +ik¥ = noopa-2 [32'@1 n %}
a 3Pb

- Neutrinos: similar to photons, but no collision terms



What we have got so far:

® A set of differential equations relating
changes in the density, velocity, and
temperature perturbations to the potential

Still missing:

® Finding out how the potential (i.e. the metric)
responds to the perturbations



Ingredients and their coupling

Dark
Matter

Compton
scattering

scattering

Based on Dodelson, Modern Cosmology



The perturbed field equations

Einstein’s field equations:

1
G =R, — 59’“/72 = 81GT1,,

10 independent equations, but we need only two (to find ¢ and ).

Choose component (0,0)
G()() — 87TGTO()

It turns out to be useful (when evaluating T) to raise one of the indices:
G% = 9" G
= ¢"Gyo g is diagonal

1
=g" (Roo — —gooR

2
R
= (—1+2V)Rgo — 5 g%goo = 1



The perturbed field equations

Left-hand side (Einstein tensor):

R
GOO = (—1 -+ Q\IJ)RQ() — E

To evaluate this, we need Roo (the Ricci tensor) and = (the Ricci scalar).

Since
R — QMVRW/

we do need to calculate all the elements of R:

(Some of) the details will be done in an exercise.



The perturbed field equations

Result from exercise: the Christoffel symbols I'0,y:

Foij — 52'3'0,2 [H + QH((I) — \If) + (1370]

The remaining Christoffel symbols, I'y:

. ikt -
FZOO — —Q\Ij
a

[jo =0y = 05 [H + @ o)

Fijk — i® [52-]-/% + 5z’kkj — 5jkki]



The perturbed field equations

We can then calculate the Ricci tensor:

R,LLI/ — Fauy,a — Faua,u + Faﬁarﬁuu — Faﬁl/rﬁua

The Ricci scalar can be conveniently separated into two components:

Zeroth order (unperturbed) component:

2 2

a

First order component:

d2a/dt? 2 2
RO = 199 (g2 + LY + 20— + 6B gy — 6H(V g — 4P ) + 40—
a a? ! ! ! a?



The perturbed field equations

We now have everything we need for the Einstein tensor:

GOO = (—1 —+ Q\IJ)R()() — %

We will look only at the perturbed (first-order) part
k)? d?a/dt?
(k)2 d%)

a? a

5GOO — (_1 -+ 2\11) |: 3(1)’00 —+ 3(H\I/7() — 2H(I)’()):|

| d2a/d12 k2 2
w2 YN L ogR 60 0 — 6H (T, — 40 o) + 405
2 a a? ’ ’ ’ a?

Looks rather daunting, but simplifies to

0G%) = 6H*V — 6H® g — 2— @




The perturbed field equations

We can now return to the Einstein equation: GOO — 87TGTOO

k2
0G’) = 6H°Y —6H® g —2— P
a

On the right-hand side, we have

T, =

with the perturbed part of Tk, being

0T = — [pamd + pudp + 4pOq + 4p, Ny

[for photons we have used that the energy density is ~ T4 = To(1+0Q)% ~ To(1 + 40) |



Putting it together

Including all species (DM, baryons, photons, neutrinos), we get

0T = — [pamd + Py + 4pO0 + 4p, No]

Combining this with the left-hand side of the Einstein eqgn (6G0%), we get

]CQ
3H*V —3H® ) — —5® = —47G [pamd + pudy + 4pyO0 + 4p,No)

where the ‘tildes’ (~) have been dropped, but W, ®, and O refer to the respective
Fourier components.

In terms of conformal time, with @ = da/dn

a { - 9}
k2D + 35 (CID — a@) = 47 Ga? [pamd + puoy + 4p-O0 + 4p, No]

Note that for a=const, this reduces to the standard Poisson eqn.



Relating fluctuations in density, potential, and metric

One relation between the metric perturbations and the density:

2o + 32 (cb _ 9\11) = 47 Ga? [pamd + pudy + 4po O + 4p, Np]

a a

Another relation can be obtained from the spatial components of the field eqn:

We do not go through the detailed derivation, but the resulting relation is
(U + @) = —321Ga’® [p,O2 + p, N3]

for quadrupole moments ©2 and No.

If the photon and neutrino perturbations have no quadrupole moments, then



The Boltzmann equations

- Photons:

- (Cold) dark matter: no collision terms; particles are non- -relativistic.

5+zkv+3<1>—()

Density fluctuations:

Velocity field: U+ Ev +ik¥ =0

- Baryons: Collision terms from Coulomb scattering;

5, & ik, + 30 = 0

4
vb —I— vb + kW = neaTa?)L {32@1 + vb}
Pb

- Neutrinos: similar to photons, but no collision terms



Evolution of density perturbations

® VWe have now derived:

® The relativistic Boltzmann equations for the different
constituents (dark/ordinary matter, photons, neutrinos)

® Einstein equations for the potentials+curvature

® Ve now need to solve these equations.

® |n general, this must be done numerically, using suitable
initial conditions (e.g., as predicted by inflation)

® However, useful insight can be obtained analytically for
certain specific situations



Evolution of the potential

LOg]() (a/aeq)

Padmanabhan 2006
astro-ph/0602117
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Early times:

- Fluctuations larger than horizon,
potential does not evolve.

Intermediate times:
- Modes within horizon in
radiation-dominated Universe

- Radiation pressure dominates
- Potential decays

Late times:

- Universe is matter dominated
- Potential is constant



Growth of dark matter perturbations

I
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Dodelson, Modern Cosmology.

Radiation-dominated epoch:
- Growth slowed by decaying
potentials, DM grows only
logarithmic.

Matter-dominated epoch:
- Linear growth
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k3/2 (@, + V)

Acoustic oscillations

Largest (super-horizon) scales:

Perturbations hardly evolve (no
causal physics) - power-spectrum

\l|llll’lTT

IS “pristine” (i.e. as produced by
inflation)

First peak:

Perturbations on this scale enter
horizon at some epoch ni<n® and
just manage to reach maximum
compression by n*

First trough:
Perturbations enter horizon at

N2<n1, “bounce”, and re-expand
to average density by n*

Second peak:

Perturbations re-expand to
average rarefaction by n*



VVhat about the spring
analogies!



Acoustic oscillations

So much for the general picture. Now let’s look at the details!

The tightly coupled limit:

Before recombination (n*), mean free path for a photon was much smaller
than horizon.

Define optical depth as integral of neora over (conformal) time:

T(n) = /"0 dn'neora
n
with derivative:
dr .
d77 — T — —NeOTA

Tightly coupled limit corresponds to T >> 1.



Acoustic oscillations

Tightly Coupled Limit

The tightly coupled limit:

7o
T(n) = dn'n.ora
n

........

Tightly coupled limit corresponds to T >> 1
(last scattering surface much smaller than
horizon)

Higher-order moments of radiation field are then negligible: © “looks the same in every
direction”, apart from spatial and velocity dependencies. We only need to consider
[©0o(X, 1)] - Monopole

[©1(X, 1)] - Dipole

(see Sect. 8.3.1 for formal derivation).



Multipole moments

We define the th multipole moment of © as

The first three Legendre polynomials are defined as:

Po(p) =1
Pi(p) = p
Pl = 2

2



Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:

General version:
O+ iku® = - — iku¥ + neora ©0 — O + vy

Next: obtain two new equations by multiplying by Po and P4
and integrating over all 4, dropping higher-order moments.

1

Po, left-hand side: /d,u@ + iku® = 20, + zk/ dp p©(p)

—1

= 20 + ik(—21)0;
= 20, + 2kO,



Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:

General version:
O+ iku® = - — iku¥ + neora O — O + vy

Po, left-hand side: — 20 + 2kO;

Po, right-hand side:
/11(1“ (—(i)—ikml!—%[@o—@Jruvb]) _ —/1 ducb—q;k/lldwqf—r' Ul du(@g—@)+vb/1 dW]

-1 —1 -1

94 0 270y 2760 0

Equating |.h. and r.h. sides:




Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:

General version:
O+ iku® = - — iku¥ + neora ©0 — O + vy

P1, left-hand side:

1

1
/ du (@ + ik,u@) — —2i{0; + zk/ dpp”©
~1

—1

. 1 2
= —210, + 2ik (560 — 562) Exercise



Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:

General version:
O+ iku® = —® — ikp¥ + neora [©g — © + uvy)
P+, right-hand side:
/11duu(—<i>—iku\lf—7'[@o —@+uvb]) _

1 1 1 1
—/ dupud — zk/ dpp? ¥ — 7 [/ dup(©g — 0) + vb/ d,u,u2]
—1 —1 —1 —1

2 . 2
0 ——1kW 0 —2710)4 ——TU}
3 3

2 2



Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:
General version:
O+ 1ku® = —® —kuV + ne.ora [@O — 0O+ ,LLVb]

Equating |.h. and r.h. sides:
L (1 2 2 A 2
—2101 + 2tk <§@0 — §@2> = —§z/€\If — T [22@1 + gvb]

Dividing by 2/ and dropping the O term:




Acoustic oscillations

The Boltzmann equation for photons in the tightly coupled limit:

Two equations for ©9 and ©1 and their derivatives.
We would like to have a single equation for each multipole (and eliminate w).

For vy, invoke the B.E. for baryons:



The Boltzmann equations

- Photons:

(i) + ik,u(:) + CiD + ik,uﬁf = NeOTaA [(:)O — O+ ,uvb}

- (Cold) dark matter: no collision terms; particles are non-relativistic.

Density fluctuations: 0 + Z.]W + 3 =0

2 a . o~
Velocity field: (U . + kW =0

- Baryons: Collision terms from Coulomb scattering;

5, & ik, + 3% = 0

L N 4 ~
5o+ o + kD = neaTa% [3@@1 n %}
a

Pb

- Neutrinos: similar to photons, but no collision terms



