The left-hand side of the Boltzmann equation can now be written in terms of **partial derivatives** for the *seven* independent variables (t, x^i, p^i) :

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x^i} \cdot \frac{\mathrm{d}x^i}{\mathrm{d}t} + \underbrace{\left(\frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}t}\right)}_{\text{magnitude of momentum}} + \underbrace{\left(\frac{\partial f}{\partial \hat{p}^i} \cdot \frac{\mathrm{d}\hat{p}^i}{\mathrm{d}t}\right)}_{\text{momentum}} + \underbrace{\left(\frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}t}\right)}_{\text{momentum}} + \underbrace{\left(\frac{\partial f}{\partial$$

The equilibrium distr. function (Bose-Einstein) depends only on *magnitude* of *p*, not the direction (isotropy).

Therefore $\partial f/\partial p^i$ is non-zero only for perturbed f, i.e. first order. Similarly, dp^i/dt is zero for non-perturbed metric. So the product,

$$\frac{\partial f}{\partial \hat{p}^i} \cdot \frac{\mathrm{d}\hat{p}^i}{\mathrm{d}t}$$

is a second-order term and can be neglected.

We are left with:
$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x^i} \cdot \frac{\mathrm{d}x^i}{\mathrm{d}t} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}t}$$

Now consider the second term:

$$\frac{\mathrm{d}x^i}{\mathrm{d}t} = \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} \frac{\mathrm{d}\lambda}{\mathrm{d}t}$$

From definition of four-momentum,

$$\frac{\mathrm{d}x^0}{\mathrm{d}\lambda} = \frac{\mathrm{d}t}{\mathrm{d}\lambda} = P^0 \qquad \text{and} \qquad \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} = P^i$$

We already found that

$$P^0 = p(1 - \Psi)$$

Similarly, for i=1..3, one finds

$$P^i \approx p\hat{p}^i \frac{1 - \Phi}{a}$$

so
$$\frac{\mathrm{d} x^i}{\mathrm{d} t} = \frac{P^i}{P^0} = \frac{\hat{p}^i}{a} (1 - \Phi) / (1 - \Psi) \approx \frac{\hat{p}^i}{a} (1 + \Psi - \Phi)$$

We are left with: $\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x^i} \cdot \frac{\mathrm{d}x^i}{\mathrm{d}t} + \frac{\partial f}{\partial n} \frac{\mathrm{d}p}{\mathrm{d}t}$

$$\frac{\mathrm{d}x^i}{\mathrm{d}t} \approx \frac{\hat{p}^i}{a} (1 + \Psi - \Phi)$$

Again, $\partial f/\partial x^i$ is zero (f independent of x^i) for the unperturbed solution, so the terms involving ($\partial f/\partial x^i$)(Φ) and ($\partial f/\partial x^i$)(Ψ) are second-order and can be neglected.

Then

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial f}{\partial x^i} + \frac{\partial f}{\partial p} \frac{\mathrm{d}p}{\mathrm{d}t}$$

Next: d*p*/d*t* ...

We now need the geodesic equation,

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} = -\Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda}$$

Using the definition of P,
$$P^\mu \equiv \frac{\mathrm{d} x^\mu}{\mathrm{d} \lambda}$$

$$\frac{\mathrm{d} P^0}{\mathrm{d} \lambda} = -\Gamma^0_{\alpha\beta} P^\alpha P^\beta$$

After some manipulation (exercise), one finds

$$\frac{\mathrm{d}p}{\mathrm{d}t} = p \left\{ \frac{\partial \Psi}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Psi}{\partial x^i} \right\} - \Gamma_{\alpha\beta}^0 \frac{P^{\alpha} P^{\beta}}{p} (1 + 2\Psi)$$

Evaluate Christoffel symbol, cancel more 2nd order terms (exercise)

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -p\left(H + \frac{\partial\Phi}{\partial t} + \frac{\hat{p}^i}{a}\frac{\partial\Psi}{\partial x^i}\right)$$

Inserting in the Boltzmann eqn, the left-hand side looks as follows:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial f}{\partial x^i} - p \frac{\partial f}{\partial p} \left[H + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Psi}{\partial x^i} \right]$$

But we need a more concrete form of the distribution function f(t,x,p) to get further

Back to the distribution function

Unperturbed Bose-Einstein distribution:

$$f_{\rm BE} = \frac{1}{e^{E/T} - 1}$$

Introduce *perturbations* of temperature,

$$\Theta(x, \hat{p}, t) = \delta T(x, \hat{p}, t) / T(t)$$

so that

$$f(x,p,\hat{p},t) = \left[\exp\left\{\frac{p}{T(t)[1+\Theta(x,\hat{p},t)]}\right\} - 1\right]^{-1} \quad \begin{array}{c} \textit{\textit{E=p} for photons} \\ \textit{\textit{(c=1)}} \end{array}\right]$$

Expanding to first order in Θ gives ($\delta T = T\Theta$)

$$f \approx f^{(0)} + T \frac{\partial f^{(0)}}{\partial T} \Theta = f^{(0)} - p \frac{\partial f^{(0)}}{\partial p} \Theta$$

Left-hand side of Boltzmann equation:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial f}{\partial x^i} - p \frac{\partial f}{\partial p} \left[H + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Psi}{\partial x^i} \right]$$

Perturbed distribution function:

$$f \approx f^{(0)} - p \frac{\partial f^{(0)}}{\partial p} \Theta$$

The zero-order terms (no dep. on Θ , ϕ , ψ , x) yield

$$\frac{\mathrm{d}f}{\mathrm{d}t}\bigg|_0 = \frac{\partial f^{(0)}}{\partial t} - Hp \frac{\partial f^{(0)}}{\partial p} = 0$$
 Equilibrium - collision terms in B.E. vanish

The zero-order terms (no dep. on Θ , ϕ , ψ , x) yield

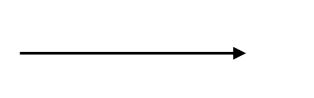
$$\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_0 = \frac{\partial f^{(0)}}{\partial t} - Hp \frac{\partial f^{(0)}}{\partial p} = 0$$
 Equilibrium - collision terms in B.E. vanish of the proof of the

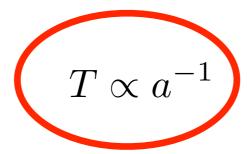
Using that $T\partial f^{(0)}/\partial T = -p\partial f^{(0)}\partial p$ (again), we have

$$\frac{\partial f^{(0)}}{\partial t} = \frac{\partial f^{(0)}}{\partial T} \frac{dT}{dt} = -\frac{\partial f^{(0)}}{\partial p} \frac{p}{T} \frac{dT}{dt}$$

SO

$$\left[-\frac{\mathrm{d}T/\mathrm{d}t}{T} - \frac{\mathrm{d}a/\mathrm{d}t}{a} \right] \frac{\partial f^{(0)}}{\partial p} = 0$$





The *first-order* terms are (exercise):

Collision terms due to Compton scattering

$$\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{1} = -p\frac{\partial f^{(0)}}{\partial p} \left[\frac{\partial \Theta}{\partial t} + \frac{\hat{p}^{i}}{a} \frac{\partial \Theta}{\partial x^{i}} + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^{i}}{a} \frac{\partial \Psi}{\partial x^{i}} \right] = C[f]$$

Now, the collision terms on the right-hand side.

Relevant physical process: Compton scattering,

$$e^-(q) + \gamma(p) \leftrightarrow e^-(q') + \gamma(p')$$

for electron momenta q, q'and photon momenta p, p'.

Compton scattering:

$$e^-(q) + \gamma(p) \leftrightarrow e^-(q') + \gamma(p')$$

Schematically, the collision terms can be written as

$$\frac{\mathrm{d}f(\vec{p})}{\mathrm{d}t} = C[f(\vec{p})] = \sum_{\vec{q},\vec{q'},\vec{p'}} |\mathrm{Amplitude}|^2 \left\{ f_e(\vec{q'})f(\vec{p'}) - \left(f_e(\vec{q})f(\vec{p}) \right) \right\}$$
"production" of photons with momentum p
"destruction" of photons with momentum p

Sum is written over all q, q', p', but energy and momentum must be conserv

More formally, we have

Exercise 5

$C[f(\vec{p})] = \frac{1}{p} \int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3 2E_e(q)} \int \frac{\mathrm{d}^3 \vec{q'}}{(2\pi)^3 2E_e(q')} \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2E(p')} (\mathcal{M}|^2) (2\pi)^4$

Amplitude

Integrals over all **q**, **q**', **p**'

$$\times \delta^{3}(\vec{p} + \vec{q} - \vec{p'} - \vec{q'}) \times \delta[E(p) + E_{e}(q) - E(p') - E_{e}(q')]$$

Momentum/energy conservation

$$\times \left[f_e(\vec{q'}) f(\vec{p'}) - f_e(\vec{q}) f(\vec{p}) \right]$$

"Rate equation" (photons entering - leaving this bin of *f(p)*)

Notes:

Factors of 1/E come from integration over E - taking into account that E and momenta are related through $E^2 = p^2 + m^2$, so that

$$\int d^3 \vec{p} \int dE \, \delta(E^2 - p^2 - m^2) = \int \frac{d^3 \vec{p}}{2E(p)}$$

(see also F. Saueressig's lectures)

Amplitude IMI² depends on physics of Compton scattering

First, concentrate on the integrals on the first line:

$$\int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3 2E_e(q)} \int \frac{\mathrm{d}^3 \vec{q'}}{(2\pi)^3 2E_e(q')} \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2E(p')}$$

The electrons are non-relativistic at the epochs of interest: T ~ 3000 K at epoch of recombination, so $E_{\rm kin}=(3/2)kT\approx 0.26\,{\rm eV}\ll m_ec^2(\approx 0.5\,{\rm MeV})$

We can therefore replace $E_e(q)$ with m_e in the denominators (setting c=1)

$$\int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3 2E_e(q)} \approx \frac{1}{2m_e} \int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3}$$

For photons, we have E = p, so

$$\int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2E(p')} = \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2p'}$$

First, concentrate on the integrals on the first line:

$$\int \frac{d^{3}\vec{q}}{(2\pi)^{3}2E_{e}(q)} \int \frac{d^{3}\vec{q'}}{(2\pi)^{3}2E_{e}(q')} \int \frac{d^{3}\vec{p'}}{(2\pi)^{3}2E(p')} \qquad \int \frac{d^{3}\vec{q}}{(2\pi)^{3}2E_{e}(q)} \approx \frac{1}{2m_{e}} \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \\
\int \frac{d^{3}\vec{p'}}{(2\pi)^{3}2E(p')} = \int \frac{d^{3}\vec{p'}}{(2\pi)^{3}2p'}$$

$$\int \frac{d^3 \vec{q}}{(2\pi)^3 2E_e(q)} \approx \frac{1}{2m_e} \int \frac{d^3 \vec{q}}{(2\pi)^3}$$

$$\int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2E(p')} = \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 2p'}$$

Inserting the integrals from the box, we then get:

$$C[f(\vec{p})] = \frac{(2\pi)^4}{8m_e^2 p} \int \frac{d^3 \vec{q}}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \delta^3(\vec{p} + \vec{q} - \vec{p'} - \vec{q'}) \times \delta[E(p) + E_e(q) - E(p') - E_e(q')]$$

$$\times [f_e(\vec{q'})f(\vec{p'}) - f_e(\vec{q})f(\vec{p})]$$

$$C[f(\vec{p})] = \frac{(2\pi)^4}{8m_e^2 p} \int \frac{d^3 \vec{q}}{(2\pi)^3} \int \frac{d^3 \vec{q'}}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \delta^3(\vec{p} + \vec{q} - \vec{p'} - \vec{q'}) \times \delta[E(p) + E_e(q) - E(p') - E_e(q')]$$

$$\times [f_e(\vec{q'})f(\vec{p'}) - f_e(\vec{q})f(\vec{p})]$$

The middle integral is straight forward, making use of the momentum conservation:

$$\vec{q'} = \vec{p} + \vec{q} - \vec{p'}$$

Using the momentum delta function to evaluate the q'integral, we get

$$C[f(\vec{p})] = \frac{(2\pi)^4}{8m_e^2 p(2\pi)^3} \int \frac{d^3 \vec{q}}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \delta[E(p) + E_e(q) - E(p') - E_e(\vec{p} + \vec{q} - \vec{p'})] \times [f_e(\vec{p} + \vec{q} - \vec{p'})f(p') - f_e(q)f(p)]$$

- note that q' has now been eliminated.

$$C[f(\vec{p})] = \frac{(2\pi)^4}{8m_e^2 p(2\pi)^3} \int \frac{d^3 \vec{q}}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \delta[E(p) + E_e(q) - E(p') - E_e(\vec{p} + \vec{q} - \vec{p'})] \times [f_e(\vec{p} + \vec{q} - \vec{p'})f(p') - f_e(q)f(p)]$$

- note that q' has now been eliminated!

Next, energy conservation: Photons: E=p, and (non-relativistic) electrons: $E=m_e+\frac{q^2}{2m_e}$

Also, since $q\sim q'$ (change in electron momentum is small), we can replace $f_e(p+q-p')$ with $f_e(q)$ in the last factor. This leads to

$$C[f(p)] = \frac{\pi}{4m_e^2 p} \int d^3 \vec{q} \frac{f_e(\vec{q})}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \left[\delta(p - p') + \frac{\partial \delta(p - p')}{\partial p'} \frac{\vec{q} \cdot (\vec{p} - \vec{p'})}{m_e} \right] \times [f(\vec{p'}) - f(\vec{p})]$$

$$C[f(p)] = \frac{\pi}{4m_e^2 p} \int d^3 \vec{q} \frac{f_e(\vec{q})}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} |\mathcal{M}|^2$$

$$\times \left[\delta(p - p') + \frac{\partial \delta(p - p')}{\partial p'} \frac{\vec{q} \cdot (\vec{p} - \vec{p'})}{m_e} \right] \times [f(\vec{p'}) - f(\vec{p})]$$

Now, we need the amplitude term, IM12:

For simplicity, we simply assume it to be constant: $|\mathcal{M}|^2 \approx 8\pi\sigma_T m_e^2$

(not strictly correct; depends on the angle between p and p', and on polarization, but final error is small)

Then we have

$$C[f(\vec{p})] = \frac{2\pi^2 \sigma_T}{p} \int d^3 \vec{q} \frac{f_e(\vec{q})}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} \times \left[\delta(p - p') + \frac{\partial \delta}{\partial p'} \frac{\vec{q} \cdot (\vec{p} - \vec{p'})}{m_e} \right] \times [f(\vec{p'}) - f(\vec{p})]$$

$$C[f(\vec{p})] = \frac{2\pi^2 \sigma_T}{p} \int d^3 \vec{q} \frac{f_e(\vec{q})}{(2\pi)^3} \int \frac{d^3 \vec{p'}}{(2\pi)^3 p'} \times \left[\delta(p - p') + \frac{\partial \delta}{\partial p'} \frac{\vec{q} \cdot (\vec{p} - \vec{p'})}{m_e} \right] \times [f(\vec{p'}) - f(\vec{p})]$$

Only two terms depend on *q*:

The integral of $f_e(q)$ over all q is the total electron density,

$$\int \frac{f_e(\vec{q})}{(2\pi)^3} d^3 \vec{q} = n_e$$

The integral of $q/m_e = v$ is the mean (bulk) electron velocity,

$$\left(\int \frac{f_e(\vec{q})}{(2\pi)^3} \frac{\vec{q}}{m_e} d^3 \vec{q} = n_e v_b\right)$$

And only the integral over p' is left:

$$C[f(p)] = \frac{2\pi^2 n_e \sigma_T}{p} \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 p'} \times \left[\delta(p - p') + \frac{\partial \delta}{\partial p'} \vec{v_b} \cdot (\vec{p} - \vec{p'}) \right] \times [f(\vec{p'}) - f(\vec{p})]$$

Integral over p':

$$C[f(p)] = \frac{2\pi^2 n_e \sigma_T}{p} \int \frac{\mathrm{d}^3 \vec{p'}}{(2\pi)^3 p'} \times \left[\delta(p - p') + \frac{\partial \delta}{\partial p'} \vec{v_b} \cdot (\vec{p} - \vec{p'}) \right] \times [f(\vec{p'}) - f(\vec{p})]$$

Integrating by parts takes care of the δ function (exercise). Re-introduce our expansion of f(p).

Define the *monopole* of the temperature perturbations as

$$\Theta_0(\vec{x},t) \equiv \frac{1}{4\pi} \int d\Omega' \Theta(\hat{p}', \vec{x}, t)$$

This finally gives the result:

$$C[f(p)] = -p \frac{\partial f^{(0)}}{\partial p} n_e \sigma_T \left[\Theta_0 - \Theta(\hat{p}) + \hat{p} \cdot \vec{v_b} \right]$$

Putting it together:

Left-hand side of Boltzmann eq. (time derivative of distribution function)

$$\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{1} = -p\frac{\partial f^{(0)}}{\partial p} \left[\frac{\partial \Theta}{\partial t} + \frac{\hat{p}^{i}}{a} \frac{\partial \Theta}{\partial x^{i}} + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^{i}}{a} \frac{\partial \Psi}{\partial x^{i}} \right] = C[f]$$

Right-hand side (collision terms):

$$C[f(p)] = -p \frac{\partial f^{(0)}}{\partial p} n_e \sigma_T \left[\Theta_0 - \Theta(\hat{p}) + \hat{p} \cdot \vec{v_b} \right]$$

Combining the two, we finally have

$$\frac{\partial \Theta}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Theta}{\partial x^i} + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Psi}{\partial x^i} = n_e \sigma_T \left[\Theta_0 - \Theta + \hat{p} \cdot \mathbf{v}_b \right]$$

$$\frac{\partial \Theta}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Theta}{\partial x^i} + \frac{\partial \Phi}{\partial t} + \frac{\hat{p}^i}{a} \frac{\partial \Psi}{\partial x^i} = n_e \sigma_T \left[\Theta_0 - \Theta + \hat{p} \cdot \mathbf{v}_b \right]$$

Replacing *t* with the *conformal* time ($c\eta$ = comoving horizon),

$$\eta \equiv \int_0^t \frac{\mathrm{d}t'}{a(t')} \qquad \frac{\mathrm{d}\eta}{\mathrm{d}t} = 1/a(t)$$

so that

$$\frac{\partial \Theta}{\partial t} = \frac{\partial \Theta}{\partial n} \frac{\partial \eta}{\partial t} \equiv \frac{\Theta}{a}$$
 etc..

the Boltzmann equation for photons finally becomes

$$\dot{\Theta} + \hat{p}^i \frac{\partial \Theta}{\partial x^i} + \dot{\Phi} + \hat{p}^i \frac{\partial \Psi}{\partial x^i} = n_e \sigma_T a \left[\Theta_0 - \Theta + \hat{p} \cdot \mathbf{v}_b \right]$$

$$\dot{\Theta} + \hat{p}^i \frac{\partial \Theta}{\partial x^i} + \dot{\Phi} + \hat{p}^i \frac{\partial \Psi}{\partial x^i} = n_e \sigma_T a \left[\Theta_0 - \Theta + \hat{p} \cdot \mathbf{v}_b \right]$$

Partial differential equation, coupling variations in *temperature* distribution (Θ) to variations in the *potential* (Ψ) , *curvature* (Φ) and *velocity* field (\mathbf{v}_b) .

Simpler to solve in Fourier space, since

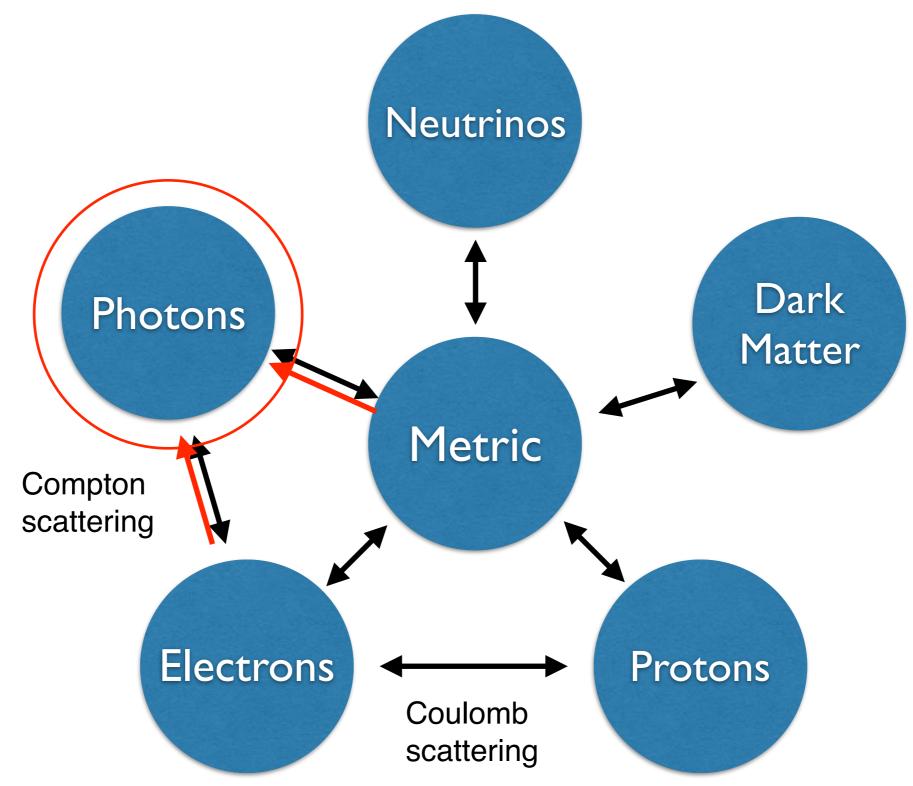
- (a) partial derivatives are replaced by multiplication: $\mathcal{F}\left[f'(x)\right](k)=ik\mathcal{F}\left[f(x)\right](k)$
- (b) small amplitude Fourier modes evolve independently.

Then we get

$$\dot{\tilde{\Theta}} + ik\mu\tilde{\Theta} + \dot{\tilde{\Phi}} + ik\mu\tilde{\Psi} = n_e\sigma_T a\left[\tilde{\Theta}_0 - \tilde{\Theta} + \mu\mathbf{v}_b\right]$$

where $\mu \equiv \frac{\mathbf{k} \cdot \hat{p}}{k}$ is the direction of photon propagation w.r.t. the Fourier comp.

Ingredients and their coupling



B.E. for other components

We have derived the Boltzmann equation for *photons*.

Equivalent equations for

– (Cold) dark matter (§4.5): no collision terms; particles are non-relativistic. No specific form for distrib. function assumed, use *moments* of B.E:

Density fluctuations:

$$\dot{\tilde{\delta}} + ik\tilde{v} + 3\dot{\tilde{\Phi}} = 0$$

Velocity field:

$$\dot{\tilde{v}} + \frac{\dot{a}}{a}\tilde{v} + ik\tilde{\Psi} = 0$$

- Baryons (§4.6): Collision terms from Compton scattering;

$$\dot{\tilde{\delta}}_b + ik\tilde{v}_b + 3\dot{\tilde{\Phi}} = 0$$

$$\dot{\tilde{v}}_b + \frac{\dot{a}}{a}\tilde{v}_b + ik\tilde{\Psi} = n_e\sigma_T a \frac{4\rho_{\gamma}}{3\rho_b} \left[3i\tilde{\Theta}_1 + \tilde{v}_b \right]$$

- Neutrinos: similar to photons, but no collision terms

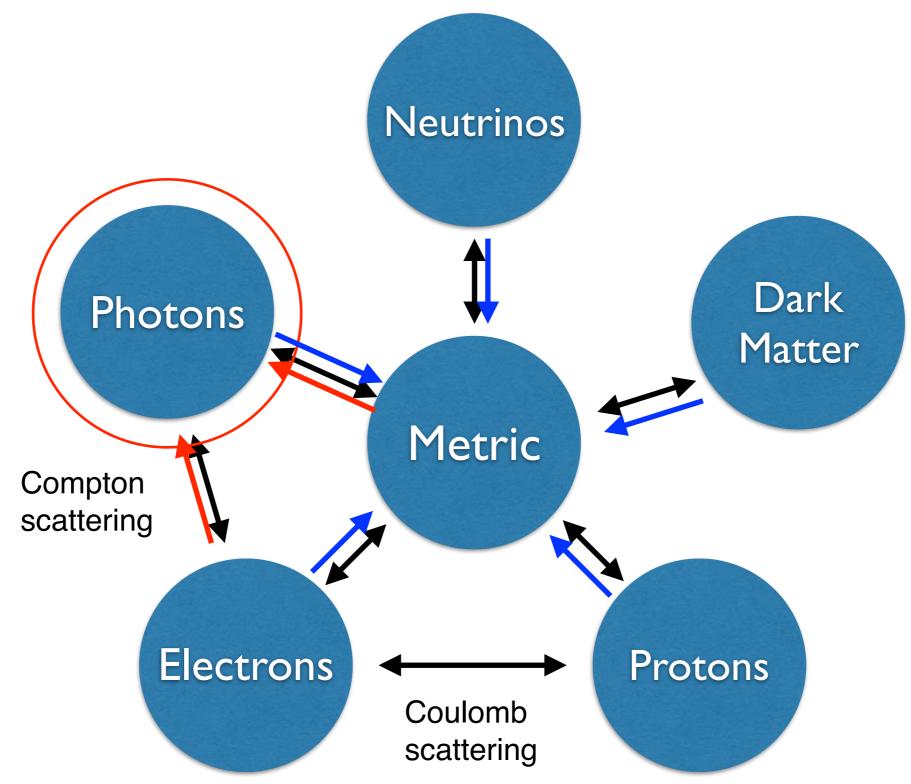
What we have got so far:

 A set of differential equations relating changes in the density, velocity, and temperature perturbations to the potential

Still missing:

 Finding out how the potential (i.e. the metric) responds to the perturbations

Ingredients and their coupling



Einstein's field equations:

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R} = 8\pi G T_{\mu\nu}$$

10 independent equations, but we need only two (to find ϕ and ψ).

Choose component (0,0)

$$G_{00} = 8\pi G T_{00}$$

It turns out to be useful (when evaluating T) to raise one of the indices:

$$\begin{split} G^0{}_0 &= g^{0i}G_{i0} \\ &= g^{00}G_{00} \qquad \qquad g \text{ is diagonal} \\ &= g^{00}\left(R_{00} - \frac{1}{2}g_{00}\mathcal{R}\right) \\ &= (-1+2\Psi)R_{00} - \frac{\mathcal{R}}{2} \qquad \qquad g^{oo}g_{oo} = \mathbf{1} \end{split}$$

Left-hand side (Einstein tensor):

$$G^0_0 = (-1 + 2\Psi)R_{00} - \frac{\mathcal{R}}{2}$$

To evaluate this, we need R_{00} (the Ricci tensor) and \mathbb{R} (the Ricci scalar).

Since

$$\mathcal{R} = g^{\mu\nu} R_{\mu\nu}$$

we do need to calculate all the elements of R:

$$R_{\mu\nu} = \Gamma^{\alpha}{}_{\mu\nu,\alpha} - \Gamma^{\alpha}{}_{\mu\alpha,\nu} + \Gamma^{\alpha}{}_{\beta\alpha}\Gamma^{\beta}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\beta\nu}\Gamma^{\beta}{}_{\mu\alpha}$$

(Some of) the details will be done in an exercise.

Result from exercise: the Christoffel symbols $\Gamma^{0}_{\mu\nu}$:

$$\Gamma^{0}{}_{00} = \Psi_{,0}$$

$$\Gamma^{0}{}_{i0} = \Gamma^{0}{}_{0i} = ik_{i}\tilde{\Psi}$$

$$\Gamma^{0}{}_{ij} = \delta_{ij}a^{2} \left[H + 2H(\Phi - \Psi) + \Phi_{,0} \right]$$

The remaining Christoffel symbols, $\Gamma^{i}_{\mu\nu}$:

$$\Gamma^{i}{}_{00} = \frac{ik^{i}}{a^{2}}\tilde{\Psi}$$

$$\Gamma^{i}{}_{j0} = \Gamma^{i}{}_{0j} = \delta_{ij}\left[H + \Phi_{,0}\right]$$

$$\Gamma^{i}{}_{jk} = i\tilde{\Phi}\left[\delta_{ij}k_{k} + \delta_{ik}k_{j} - \delta_{jk}k_{i}\right]$$

We can then calculate the Ricci tensor:

$$R_{\mu\nu} = \Gamma^{\alpha}{}_{\mu\nu,\alpha} - \Gamma^{\alpha}{}_{\mu\alpha,\nu} + \Gamma^{\alpha}{}_{\beta\alpha}\Gamma^{\beta}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\beta\nu}\Gamma^{\beta}{}_{\mu\alpha}$$

The Ricci scalar can be conveniently separated into two components:

Zeroth order (unperturbed) component:

$$\mathcal{R}^{(0)} = 6\left(\frac{\mathrm{d}^2 a/\mathrm{d}t^2}{a} + H^2\right)$$

First order component:

$$\mathcal{R}^{(1)} = -12\Psi\left(H^2 + \frac{\mathrm{d}^2 a/\mathrm{d}t^2}{a}\right) + 2\Psi\frac{k^2}{a^2} + 6\Phi_{,00} - 6H(\Psi_{,0} - 4\Phi_{,0}) + 4\Phi\frac{k^2}{a^2}$$

We now have everything we need for the Einstein tensor:

$$G^0{}_0 = (-1 + 2\Psi)R_{00} - \frac{\mathcal{R}}{2}$$

We will look only at the perturbed (first-order) part

$$\delta G^{0}{}_{0} = (-1 + 2\Psi) \left[-\frac{(k)^{2}}{a^{2}} \Psi - 3\frac{\mathrm{d}^{2}a/\mathrm{d}t^{2}}{a} - 3\Phi_{,00} + 3(H\Psi_{,0} - 2H\Phi_{,0}) \right]$$

$$-\frac{1}{2}\left[-12\Psi\left(H^2 + \frac{\mathrm{d}^2 a/\mathrm{d}t^2}{a}\right) + 2\Psi\frac{k^2}{a^2} + 6\Phi_{,00} - 6H(\Psi_{,0} - 4\Phi_{,0}) + 4\Phi\frac{k^2}{a^2}\right]$$

Looks rather daunting, but simplifies to

$$\delta G^0{}_0 = 6H^2\Psi - 6H\Phi_{,0} - 2\frac{k^2}{a^2}\Phi$$

We can now return to the Einstein equation: $G^0_0 = 8\pi G T^0_0$

$$G^0_0 = 8\pi G T^0_0$$

$$\delta G^0{}_0 = 6H^2\Psi - 6H\Phi_{,0} - 2\frac{k^2}{a^2}\Phi$$

On the right-hand side, we have

$$T^{\mu}{}_{
u} = \left(egin{array}{cccc} -
ho & 0 & 0 & 0 \ 0 & \mathcal{P} & 0 & 0 \ 0 & 0 & \mathcal{P} & 0 \ 0 & 0 & 0 & \mathcal{P} \end{array}
ight)$$

with the perturbed part of T^µ_V being

$$\delta T^0{}_0 = -\left[\rho_{\rm dm}\delta + \rho_b\delta_b + 4\rho_\gamma\Theta_0 + 4\rho_\nu\mathcal{N}_0\right]$$

[for photons we have used that the energy density is $\sim T^4 = T_0(1+\Theta)^4 \sim T_0(1+4\Theta)$]

Putting it together

Including all species (DM, baryons, photons, neutrinos), we get

$$\delta T^{0}{}_{0} = -\left[\rho_{\rm dm}\delta + \rho_{b}\delta_{b} + 4\rho_{\gamma}\Theta_{0} + 4\rho_{\nu}\mathcal{N}_{0}\right]$$

Combining this with the left-hand side of the Einstein eqn (δG₀₀), we get

$$3H^{2}\Psi - 3H\Phi_{,0} - \frac{k^{2}}{a^{2}}\Phi = -4\pi G \left[\rho_{\rm dm}\delta + \rho_{b}\delta_{b} + 4\rho_{\gamma}\Theta_{0} + 4\rho_{\nu}\mathcal{N}_{0}\right]$$

where the 'tildes' (\sim) have been dropped, but Ψ , Φ , and Θ refer to the respective Fourier components.

In terms of conformal time, with $\dot{a} \equiv \mathrm{d}a/\mathrm{d}\eta$

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \frac{\dot{a}}{a}\Psi\right) = 4\pi Ga^{2}\left[\rho_{\rm dm}\delta + \rho_{b}\delta_{b} + 4\rho_{\gamma}\Theta_{0} + 4\rho_{\nu}\mathcal{N}_{0}\right]$$

Note that for *a*=const, this reduces to the standard Poisson eqn.

Relating fluctuations in density, potential, and metric

One relation between the metric perturbations and the density:

$$k^{2}\Phi + 3\frac{\dot{a}}{a}\left(\dot{\Phi} - \frac{\dot{a}}{a}\Psi\right) = 4\pi G a^{2}\left[\rho_{\rm dm}\delta + \rho_{b}\delta_{b} + 4\rho_{\gamma}\Theta_{0} + 4\rho_{\nu}\mathcal{N}_{0}\right]$$

Another relation can be obtained from the *spatial* components of the field eqn:

$$G^{i}{}_{j} = g^{ij} \left(R_{kj} - \frac{g_{kj}}{2} \mathcal{R} \right) = 8\pi G T^{i}{}_{j}$$

We do not go through the detailed derivation, but the resulting relation is

$$k^{2}(\Psi + \Phi) = -32\pi G a^{2} \left[\rho_{\gamma}\Theta_{2} + \rho_{\nu}\mathcal{N}_{2}\right]$$

for quadrupole moments Θ_2 and \mathcal{N}_2 .

If the photon and neutrino perturbations have no quadrupole moments, then

$$\Psi = -\Phi$$

The Boltzmann equations

- Photons:

$$\dot{\Theta} + \hat{p}^i \frac{\partial \Theta}{\partial x^i} + \dot{\Phi} + \hat{p}^i \frac{\partial \Psi}{\partial x^i} = n_e \sigma_T a \left[\Theta_0 - \Theta + \hat{p} \cdot \mathbf{v}_b \right]$$

- (Cold) dark matter: no collision terms; particles are non-relativistic.

Density fluctuations:

Velocity field:

$$\dot{\tilde{\delta}} + ik\tilde{v} + 3\dot{\tilde{\Phi}} = 0$$
$$\dot{\tilde{v}} + \frac{\dot{a}}{a}\tilde{v} + ik\tilde{\Psi} = 0$$

- Baryons: Collision terms from Coulomb scattering;

$$\dot{\tilde{\delta}}_b + ik\tilde{v}_b + 3\dot{\tilde{\Phi}} = 0$$

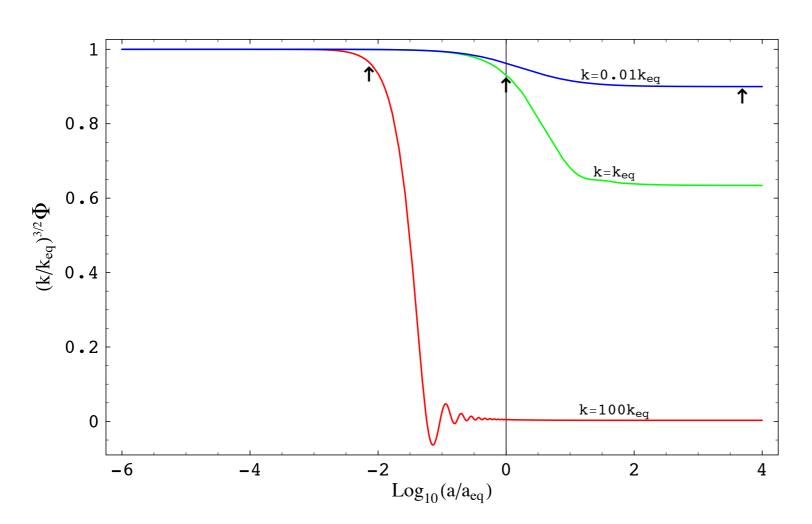
$$\dot{\tilde{v}}_b + \frac{\dot{a}}{a}\tilde{v}_b + ik\tilde{\Psi} = n_e\sigma_T a \frac{4\rho_{\gamma}}{3\rho_b} \left[3i\tilde{\Theta}_1 + \tilde{v}_b \right]$$

- Neutrinos: similar to photons, but no collision terms

Evolution of density perturbations

- We have now derived:
 - The relativistic Boltzmann equations for the different constituents (dark/ordinary matter, photons, neutrinos)
 - Einstein equations for the potentials+curvature
- We now need to solve these equations.
- In general, this must be done *numerically*, using suitable initial conditions (e.g., as predicted by inflation)
- However, useful insight can be obtained analytically for certain specific situations

Evolution of the potential



Early times:

- Fluctuations larger than horizon, potential does not evolve.

Intermediate times:

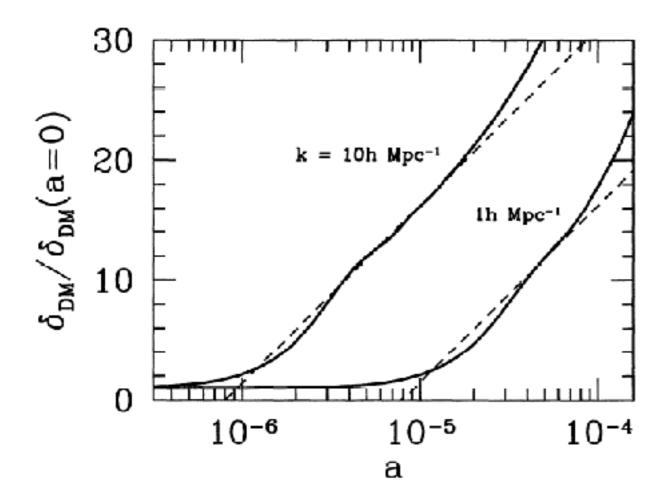
- Modes within horizon in radiation-dominated Universe
- Radiation pressure dominates
- Potential decays

Late times:

- Universe is matter dominated
- Potential is constant

Padmanabhan 2006 astro-ph/0602117

Growth of dark matter perturbations



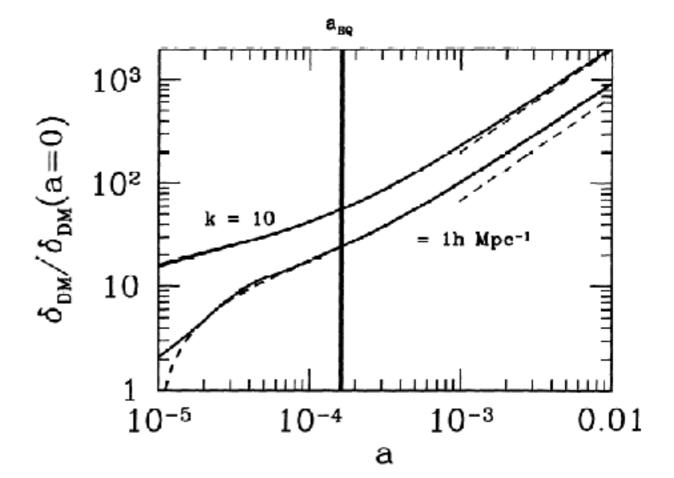
Dodelson, Modern Cosmology.

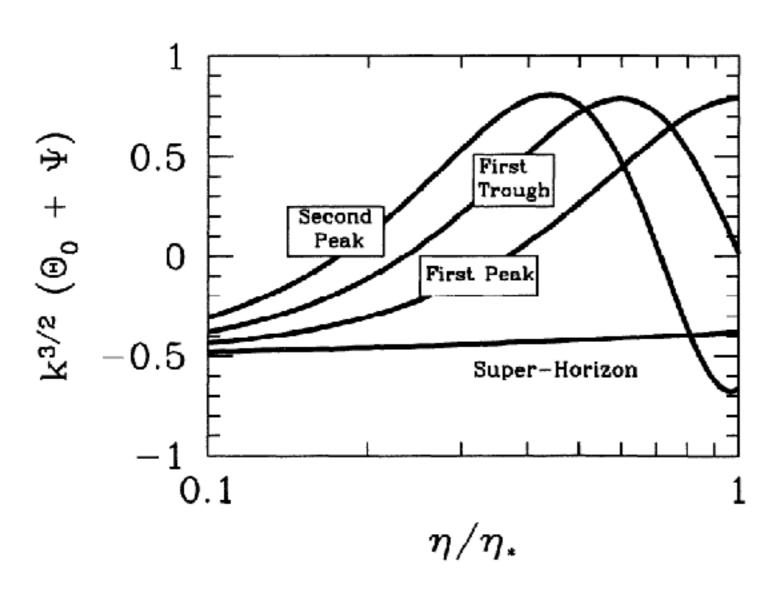
Radiation-dominated epoch:

 Growth slowed by decaying potentials, DM grows only logarithmic.

Matter-dominated epoch:

- Linear growth





Largest (super-horizon) scales:

Perturbations hardly evolve (no causal physics) - power-spectrum is "pristine" (i.e. as produced by inflation)

First peak:

Perturbations on this scale enter horizon at some epoch $\eta_1 < \eta^*$ and just manage to reach maximum compression by η^*

First trough:

Perturbations enter horizon at $\eta_2 < \eta_1$, "bounce", and re-expand to average density by η^*

Second peak:

Perturbations re-expand to average rarefaction by η*

What about the spring analogies?

So much for the general picture. Now let's look at the details!

The tightly coupled limit:

Before recombination (η^*), mean free path for a photon was much smaller than horizon.

Define *optical depth* as integral of $n_e \sigma_T a$ over (conformal) time:

$$\tau(\eta) \equiv \int_{\eta}^{\eta_0} \mathrm{d}\eta' n_e \sigma_T a$$

with derivative:

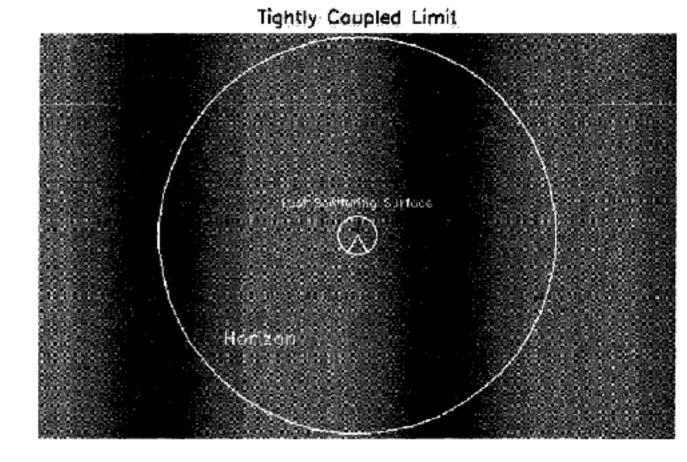
$$\frac{\mathrm{d}\tau}{\mathrm{d}\eta} \equiv \dot{\tau} = -n_e \sigma_T a$$

Tightly coupled limit corresponds to $\tau >> 1$.

The tightly coupled limit:

$$\tau(\eta) \equiv \int_{\eta}^{\eta_0} \mathrm{d}\eta' n_e \sigma_T a$$

Tightly coupled limit corresponds to $\tau >> 1$ (last scattering surface much smaller than horizon)



Higher-order moments of radiation field are then negligible: Θ "looks the same in every direction", apart from spatial and velocity dependencies. We only need to consider

 $[\Theta_0(\mathbf{x}, t)]$ - Monopole

 $[\Theta_1(\mathbf{x}, t)]$ - Dipole

(see Sect. 8.3.1 for formal derivation).

Multipole moments

We define the *I*th multipole moment of Θ as

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

The first three Legendre polynomials are defined as:

$$\mathcal{P}_0(\mu) = 1$$

$$\mathcal{P}_1(\mu) = \mu$$

$$\mathcal{P}_2(\mu) = \frac{3\mu^2 - 1}{2}$$

Acoustic oscillations $\left| \begin{array}{l} \Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu) \\ \mathcal{P}_0(\mu) = 1 & \mathcal{P}_1(\mu) = \mu \end{array} \right|$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right]$$

Next: obtain two new equations by multiplying by P_0 and P_1 and integrating over all μ , dropping higher-order moments.

P₀, left-hand side:
$$\int \mathrm{d}\mu\,\dot{\Theta} + ik\mu\Theta = 2\dot{\Theta}_0 + ik\int_{-1}^1 \mathrm{d}\mu\,\mu\Theta(\mu)$$
$$= 2\dot{\Theta}_0 + ik(-2i)\Theta_1$$
$$= 2\dot{\Theta}_0 + 2k\Theta_1$$

Acoustic oscillations $\left| \begin{array}{l} \Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu) \\ \mathcal{P}_0(\mu) = 1 & \mathcal{P}_1(\mu) = \mu \end{array} \right|$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right]$$

 P_0 , left-hand side: $=2\dot{\Theta}_0+2k\Theta_1$

 P_0 , right-hand side:

$$\int_{-1}^{1} d\mu \left(-\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right] \right) = -\int_{-1}^{1} d\mu \dot{\Phi} - ik \int_{-1}^{1} d\mu \mu\Psi - \dot{\tau} \left[\int_{-1}^{1} d\mu (\Theta_0 - \Theta) + v_b \int_{-1}^{1} d\mu \mu \right]$$
$$-2\dot{\Phi} \qquad 0 \qquad -2\dot{\tau}\Theta_0 \qquad 2\dot{\tau}\Theta_0 \qquad 0$$

Equating I.h. and r.h. sides:

$$\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$$

Acoustic oscillations $\begin{vmatrix} \Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu) \\ \mathcal{P}_0(\mu) = 1 & \mathcal{P}_1(\mu) = \mu \end{vmatrix}$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right]$$

P₁, left-hand side:

$$\int_{-1}^{1} d\mu \,\mu \left(\dot{\Theta} + ik\mu\Theta\right) = -2i\dot{\Theta}_1 + ik\int_{-1}^{1} d\mu \mu^2\Theta$$
$$= -2i\dot{\Theta}_1 + 2ik\left(\frac{1}{3}\Theta_0 - \frac{2}{3}\Theta_2\right)$$

Exercise

Acoustic oscillations $\left| \begin{array}{l} \Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu) \\ \mathcal{P}_0(\mu) = 1 & \mathcal{P}_1(\mu) = \mu \end{array} \right|$

$$\Theta_l \equiv \frac{1}{(-i)^l} \int_{-1}^1 \frac{\mathrm{d}\mu}{2} \mathcal{P}_l(\mu) \Theta(\mu)$$

$$\mathcal{P}_0(\mu) = 1 \qquad \mathcal{P}_1(\mu) = \mu$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right]$$

P_1 , right-hand side:

$$\int_{-1}^{1} d\mu \, \mu \left(-\dot{\Phi} - ik\mu\Psi - \dot{\tau} \left[\Theta_0 - \Theta + \mu \mathbf{v}_b \right] \right) =$$

$$- \int_{-1}^{1} d\mu \mu \dot{\Phi} - ik \int_{-1}^{1} d\mu \mu^2 \Psi - \dot{\tau} \left[\int_{-1}^{1} d\mu \mu (\Theta_0 - \Theta) + v_b \int_{-1}^{1} d\mu \mu^2 \right]$$

$$0 \qquad -\frac{2}{3} ik\Psi \qquad 0 \qquad -2\dot{\tau} i\Theta_1 \qquad -\frac{2}{3} \dot{\tau} v_b$$

$$= -\frac{2}{3} ik\Psi - \dot{\tau} \left[2i\Theta_1 + \frac{2}{3} v_b \right]$$

The Boltzmann equation for photons in the tightly coupled limit:

General version:

$$\dot{\Theta} + ik\mu\Theta = -\dot{\Phi} - ik\mu\Psi + n_e\sigma_T a\left[\Theta_0 - \Theta + \mu \mathbf{v}_b\right]$$

Equating I.h. and r.h. sides:

$$-2i\dot{\Theta}_1 + 2ik\left(\frac{1}{3}\Theta_0 - \frac{2}{3}\Theta_2\right) = -\frac{2}{3}ik\Psi - \dot{\tau}\left[2i\Theta_1 + \frac{2}{3}v_b\right]$$

Dividing by 2i and dropping the Θ_2 term:

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3}\right]$$

The Boltzmann equation for photons in the tightly coupled limit:

$$\dot{\Theta}_0 + k\Theta_1 = -\dot{\Phi}$$

$$\dot{\Theta}_1 - \frac{k}{3}\Theta_0 = \frac{k\Psi}{3} + \dot{\tau} \left[\Theta_1 - \frac{iv_b}{3} \right]$$

Two equations for Θ_0 and Θ_1 and their derivatives.

We would like to have a single equation for each multipole (and eliminate v_b).

For v_b, invoke the B.E. for baryons:

The Boltzmann equations

- Photons:

$$\dot{\tilde{\Theta}} + ik\mu\tilde{\Theta} + \dot{\tilde{\Phi}} + ik\mu\tilde{\Psi} = n_e\sigma_T a\left[\tilde{\Theta}_0 - \tilde{\Theta} + \mu\mathbf{v}_b\right]$$

- (Cold) dark matter: no collision terms; particles are non-relativistic.

Density fluctuations:

Velocity field:

$$\dot{\tilde{\delta}} + ik\tilde{v} + 3\dot{\tilde{\Phi}} = 0$$

$$\dot{\tilde{v}} + \frac{\dot{a}}{a}\tilde{v} + ik\tilde{\Psi} = 0$$

Baryons: Collision terms from Coulomb scattering;

$$\dot{\tilde{\delta}}_b + ik\tilde{v}_b + 3\dot{\tilde{\Phi}} = 0$$

$$\dot{\tilde{\delta}}_b + ik\tilde{v}_b + 3\dot{\tilde{\Phi}} = 0$$

$$\dot{\tilde{v}}_b + \frac{\dot{a}}{a}\tilde{v}_b + ik\tilde{\Psi} = n_e\sigma_T a \frac{4\rho_{\gamma}}{3\rho_b} \left[3i\tilde{\Theta}_1 + \tilde{v}_b \right]$$

- **Neutrinos**: similar to photons, but no collision terms