340th anniversary of Ole Remer’s determination
of the speed of light.







The Development and
Growth of Density
Fluctuations



The basic problem

How to get from here:

HST= ACS

to here:

L
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Present-day densities

Mean density of Universe:
3H3
e

Mean density of galaxy clusters:

00 ~ 0.3pcrit = 0.3 ~3x107%" kgm™?

10%° M.
0~ ®3 ~2x 107 kgm™ ~ 5000 pg
(1 Mpc”)

Cols

Mean density of galaxies:

4 X 1011M@ _91 _3 5
PMW ~ (47-‘-(20 kpcg)) ~ 10 kgm ~ 3 x 10 0
3



Present-day densities

Present-day overdensities of galaxies and galaxy clusters are
A =3p/py ~ 10° (clusters)

A =3p/py ~ 10° (galaxies)

Mean density of Universe:
3
p x po(l+ z)
As virialized objects, galaxies and clusters must have segregated out after
z~50 and z~ 10, respectively.
Accessible to observations! (at least in principle).

Density contrast small (A« 1) at higher redshifts - linear regime!



Growth of perturbations

® Important distinction between Dark and
Baryonic matter.

® DM: Only gravity - relatively “easy”, especially
at early epochs when fluctuations are still small

® Baryonic matter: Complicated! - not just
gravity, but also dissipational processes,
feedback, heating/cooling, etc.



Fate of overdense regions

Static case (e.g. molecular cloud): overdensity collapses on a free-fall time
scale,

Expanding Universe:

Think of over-dense regions as “mini-Universes” of slightly higher
density than () in a critical (Einstein-de Sitter) Universe.

“Background” scale factor (for QQ=1)

i ( 3 Zot>2/3

Overdense region with (2’>1 will eventually reach maximum a’(t)
and then re-collapse.




Current densities:
()0 =0.27,Op=0.73

Note:
QM — | for z>>1

0.2L

5) 8
Redshift, z

10



Fate of overdense regions

“Background” scale factor:

a(t) = <3}2]Ot) B

Evolution of over-dense region:

Consider the parametric solutions to the Friedmann equation for
Q=0 and (Yo > (assignment):

(o
~2(Qp — 1)
- 2Hp(Qg — 1)3/2

a(0) (1 — cosf)

t(6)

(0 — sin6)



a/a(max)

t/t(rﬁax)



Fate of over-dense regions
:26531%

{2
= Yo — 1772

To find approximate relation for a(t), Taylor-expand the expressions for
a(0) and t(0) around 0=0:

a(6) 1 — cosf)

t(6) § — sin 0)

d cos 0 ldQCOSHHQ ldSCOSH

0~1+ 6 6>
O 40 5 a2 U T as VT
1 1
~1— 92+ — @
0%+ 50
1

sinf ~ 0 — =63
6



Fate of overdense regions

Solving for the scale factor a’(t) of the perturbation, we get:

2/3

2/3 [
o ~ (/s ((SHt / L (126Hy( — 1)
- 2 12 QO

VVR’__J

Qp~ Qo a(t) Growth of perturbation



Fate of overdense regions

2/3 2/3"
o ~ (/s ((3Hot / L (126Hy( — 1)
- 2 12 Q/

The density of the fluctuation is then
pl=pp(a)”
Using (1-0)3 = 1+30 for 0« I:
] 2/3-
R 3 (12tHO(Qg - 1)3/2>

"~ /0 1+ —

QL —1
y —3 0
P = pos {”“ ((%)2/3”




Fate of overdense regions

QL —1
!~ -3 0
P = pos P+“<mwﬂﬁ}

The density contrast then grows as

_ Q1 _
N Sp o —p PoC 3{14—&((92)2/3)} — poa 3
P poa3

Q) — 1
AZ&(&@%J




Key Point:

Small density contrasts A grow slowly with a
(approximately linearly):

Q) — 1
2= <<ﬂa>2/3> ’

Derived here for the special case of an Einstein-
de Sitter Universe, but (qualitatively) true
generally.




Density contrast (A)

Growth of small fluctuations

_@@/“d_a’g
2 \adt) )y, \ dt

More general analysis
(still assuming no pressure):

A(a) da’

Heath (1977); Carroll et al. (1992)
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The linear regime

® Fluctuations that are now in the non-linear regime

(A= 1) must already have had significant amplitudes
at recombination.

® At z=1000, present-day virialized structures (galaxies,
clusters) must have corresponded to A= 103 - much
larger than the fluctuations seen in the baryonic

matter in the CMB (~ 10-)!



When did virialized structures form?

® “Top-hat” model:
Consider collapse of spherically symmetric
over-densities.

® |nitially: evolve as “mini-Universes’ with higher
than critical density

® At some time tmax these reach maximum scale
factor amax, and then recollapse



a/a(max)

Top-hat model

t/t(rﬁax)



The top-hat model

Follow the evolution of a “mini-Universe” with Qo> 1:
Qp
Z(Q{) — 1)

a(f) = (1 — cos )

/

t(6) = L f — sin 6
)= Sy, — ez )

Will reach maximum scale factor amax for =TT, and recollapse for 6=2TT.
At the “turn-around” point (cos 0 = -1),

. B ), , B )
max — Q6 1 max — QH()(Qf) — 1)3/2




Top-hat model

At the “turn-around” point,

.  Q A )

while the background scale factor is

( 3[_]Otmax ) 2/3
a =

2

The density contrast is then

3
3 (3[—]0 7TQ6 )
= {l — 0 oY
Po Umax 0
Q7 —1

= 97 /16 ~ 5.55
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Top-hat model cont'd

By the time the perturbation has decoupled completely (expansion
halted), it already has A=5.

“Total recollapse” occurs at

tcoll = 2 tmax

In terms of redshift,
2/3
1 + <Zmax Umax ( tcoll > /

1 + Zcoll Ucoll tmax
1 + zmax
1 + Zeon = 52 /rgna

E.g, for zc.oi=0 (now), we get zmax~0.6



The collapse

Overdensity reaches virial equilibrium on “violent relaxation” time scale:

Tfng
ST

where P is roughly the crossing time of the system (Lynden-Bell 1967).

Applies to systems that are initially far from equilibrium configuration.

Solution to “Zwicky’s paradox” (Zwicky 1939):
Two-body relaxation time scales of galaxy clusters are of order 10'8 years,
why do they appear as symmetric as they do?
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The collapse

At point of maximum expansion, tmax:

U = U("max)
Perturbation of mass M has some
radius rmax.

Potential energy:

U=-2

D Tmax

Kinetic energy at this point:

1'=20



The collapse

Virial equilibrium is reached when
1
T'=—-=-U
2

By energy conservation,

T(Tvir) — U(Tmax) — U(’rvir)
that is,

1
U(Tmax) — 5 U(Tvir)

3GM?  13GM?

N 5 rmax 2 5 rViI‘

1

I'vir — ZTmax
2

Maximum expansion:

T=0 U=U(rmax)

Virial equilibrium:

1
T=--U
2

Virial equilibrium is reached when perturbation has contracted to half

its maximum size and 8x the minimum density.



tvir
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Collapse of structure

Key point:

Structures became virialised once their
densities reached >100 times the
background density



When did structures become virialised?

Individual galaxies:

Today, A=10°
Epoch when pg.=10? <p>

p/po = 10* — (1 + 2) =~ 20

Galaxy clusters

Today, A=10°
p/po =10 — (1+2) =2

We expect galaxy clusters to have become virialised
relatively recently (some are not yet fully virialised).



The mass function of bound structures

® |nvestigated by Press & Schechter (1974)

: @ Basic assumptions:

® Density spectrum is initially Gaussian

® Perturbations initially grow linearly, then
collapse rapidly when they exceed some
threshold amplitude A..

® Growth is hierarchical: Small perturbations
can be part of larger ones




Press-Schechter theory

Suppose the matter consists of randomly distributed particles.

For average volume number density n(m) and particle mass m the
variance on the mass in a unit volume is

02:/ m*n(m)dm
0

For fluctuations occupying a volume V the variance is
Ny = Vo’

Normalized to the mass in the volume:

oVV o
pV NV

Yy /M(V) =



Press-Schechter theory

Normalised to the mass in the volume:

oV V 0
pV oV
The relative fluctuations in M within volume V:

Ao v MV) - (M)
(M(V)) (M(V))
are normally distributed with standard deviation

A, = (7/(,0\/V)

That is, the probability distribution of over-densities A within V is

1 1 A?
p(A’V):\/%A exp( 2A2>

Yy /M(V) =




Press-Schechter theory

Probability distribution of overdensities A:

1 1 A2
p(A,V)=\/%A eXP( 2A2>

Next: Probability distribution of bound overdensities.

Assume
- Fluctuations with A > A at some scale factor a; are bound
- Growth is linear: A(az) = (az/a;) A(a;) for scale factors a; and a..

Fluctuations that are critical at a; then had an “initial” density contrast

aq
A1 — _Acrit

ao



Press-Schechter theory

Probability that a volume contains a bound fluctuation by a; is then

Pbound — / p(A, V) dA
A=A

1 > 1 A®
= 7o S, o0 (2 02
_ lerfc < Acrit@1 )
2 \/§A*6L2
Inserting A, =0o/(p1VV) we then have
1 (Acritpl \/VCM)

Prouna (V) = §erfc




Erfc[x]

erfc(z) = 1 — erf(x)

— % /;O exp(—t?)dt




Press-Schechter theory
1 (Acritpl \/val)

Pbound(v) — §erfc \/50'&
2

Since fluctuations are small initiall, M = p1V so

1 Acrit v/ M
Pbound (M) — §erfc ( \t/%/ plCLl)
o a9

This is the fraction of fluctuations with mass M that have collapsed by a:.

Some of these will be part of larger collapsed volumes. The
fraction of independent collapsed fluctuations is therefore

deound d 1 (Acrit V M,01 a1 >
— —— —erlc
\/§O‘ a2

dM  dM 2



Press-Schechter theory

The fraction of independent collapsed fluctuations is

deound d 1 <Acrit V Mpl a1 )

Since fluctuations of mass M (initially) occupiec
the number density is

which is of the form dN

with M* x a?

1 Aertpl

9 g2

1

(v

2

>2M

a volume V=M/p,,




Press-Schechter mass function:

dN

o <M 3/2 exp(—M /M*)

Low masses (M<<M¥):
Power-law shape

High masses (M>M¥):
Exponential cut-off

M* scales with a2.

Binggeli (1987)



Comparison with simulations

log M [M,]
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Somerville et al. (2000)



Comparison with simulations

o e | Solid curves:
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Springel et al. (2005)



Schechter function for galaxies

LUMINOSITY (X/x%*

1000} —

300

100

30

NUMBER

o Composite cluster galaxy
luminosity distribution

. ® c¢D galaxies included .

- Best ﬁt ®

1 L | 1 |
-18 -20 -22

ABSOLUTE MAGNITUDE My (24.1)

Fic. 2.—Best fit of analytic expression to observed com-
posite cluster galaxy luminosity distribution. Filled circles
show the effect of including ¢cD galaxies in composite.

Assume relation of form
dN L\“ L
ar S\ ) PP\

Inspired by the Press-Schechter
analysis.

General case: Best fit for
=-1.24 +/-0.19
Mp* = -20.60 +/- 0.1 |

Cluster galaxies: Best fit for
x =-1.24 +/- 0.05
Mp* = -21.41 +/- 0.10

But cD galaxies must be excluded!

Schechter (1976)



In one of the opening volleys of the science wars, Abraham Maslow wrote
[13] wrote:

I suppose it is tempting, if the only tool you have is a hammer, to
treat everything as if it were a nail.

It’s true. My hammer was the power law with an exponential cutoff and I ham-
mered on the luminosity function for galaxies [19].

Schechter (2002)



Problems with Press-Schechter analysis

® Assuming spherical symmetry

® Schechter mass predicted at z=0 is of order 10'°
Mo - applicable to galaxy clusters.

® The MF for individual galaxies also follows a
Schechter function, but with much lower M*

® Why the two different characteristic masses?

® [mportant physics missing: baryons (dissipation
and feedback).



Going further

® Major simplification in the top-hat model and
Press-Schechter formalism: spherical symmetry

® Better: treat perturbations as tri-axial ellipses

® Tri-axial perturbations collapse across the

shortest axis first and form pancakes and filaments
(Leldovich 1970)

® Most general approach: follow evolution with
numerical N-body simulations



Example N-body sim.

® “Millennium” simulation, Springel et al. (2005):

® Simulation started at z=127 with a random

realization of fluctuation power-spectrum from
CMBFAST code

® Cosmological parameters:
(o = 0.25, 2p=0.045, QA=0.75, Ho=73 km/s/Mpc

e Simulation volume (685 Mpc)3, 10'0 particles (each
individual particle has M ~ 10° Mo)



“Millennium” simulation

-’ &

15.6 Mpc h™%

e — e —

'~ 62.5Mpc h™'

250 Mpc h™"

PP N— B A —]

Springel et al. (2005)




z=18.3
(0.21 Gyr)

z=5.7
(1.0 Gyr)

z=1.4
(4.7 Gyr)

z=0
(13.6 Gyr)
















