Globular Clusters

Globular clusters in the Milky Way

Globular clusters: "Cosmic Fossils"

Comparison with stellar models shows that most GCs (in the Milky Way) are *old* (>10¹⁰ years).

Colour-magnitude diagrams generally well matched by a *single* stellar isochrone.

Hesser et al. 1987, PASP 99, 739

Starburst galaxy (NGC 1569) with young globular clusters

Perhaps some GCs formed in proto-galactic fragments that merged to form the Galactic halo (Searle & Zinn 1978).

Globular star clusters: Some numbers

- Masses $10^5 10^6 M_{\odot}$ (1 $M_{\odot} = 2 \times 10^{30} \text{ kg}$) (Half-mass) radii $\approx 3 \text{ pc}$ (1 $\text{pc} = 3 \times 10^{16} \text{ m}$)
- Present-day stellar
 - half-mass densities:
 - $\approx 10^3 M_{\odot} \text{ pc}^{-3} (n_{\text{H}} \approx 10^5 \text{ cm}^{-3})$
 - central surface/column densities: $\approx 10^5 M_{\odot} \text{ pc}^{-2} (\approx 10 \text{ g cm}^{-2})$
- Initial gas densities probably much higher

Cartoon picture of star (cluster) formation

Giant Molecular Cloud

Fragmentation

I: Collapse (if free fall) on time scale $t_{coll} = \left(\frac{3\pi}{32Go}\right)^{1/2}$

Overdense regions collapse first \rightarrow fragmentation

Cartoon picture of star (cluster) formation

2: Stars form in the densest regions of GMC

Cartoon picture of star (cluster) formation

Feedback from newlyformed stars expels residual gas

After a few 10⁶ years, a star cluster is born!

Hydrodynamic simulation of cluster formation

- 500 solar mass cloud (35×10⁶ particles).
- -T(simulation) = 285000 years.
- -T(free-fall) = 190000 years.
- Radiative feedback included.

Note: this is a very small cluster!

Courtesy Matthew Bate, Exeter University

Temperature

Young cluster in the Milky Way

Age ~ 2×10⁶ years Spread < 10⁵ years

NGC 3603 (Kudryavtseva et al. 2012)

Globular Clusters are not that simple: Omega Cen

Complex colour-magnitude diagram.

Multiple episodes/mechanisms of star formation!

Bellini et al. (2011)

Three main sequences in NGC 2808

Piotto et al. (2007)

NGC 2808

Globular clusters contain large numbers of stars (typically \gtrsim 50%) with anomalous chemical composition (not seen outside GCs).

NGC 6752: Lapenna et al. (2016)

NGC 6752: Lapenna et al. (2016)

Abundances in GCs and field

Grey: field stars Red/blue: GC stars

~50% of GC stars show enhanced Na, Al, Si (He, N) depleted O, Mg, (C)

Abundance anti-correlations in GCs

Origin of abundance anomalies in GCs

Langer et al. 1993

Decressin et al. 2007

Possible polluters - I.

Massive Asymptotic Giant Branch (AGB) stars:

Can reach high T at bottom of convective envelopes. Mass lost in a slow stellar wind.

Possible polluters - II.

Decressin et al. (2007)

Massive main sequence stars.

Cores can reach required high T.

Processed material brought to the surface by rotational mixing and lost via "mechanical wind" (Prantzos & Charbonnel 2006)

or

binary interactions (de Mink et al. 2009)

Possible polluters

Fast rotating massive (>25 M_{\odot}) main sequence stars ative winds Radiative winds mass loss [O/Na] = -2 to 0.6 2,40,30,1 /(disk) [O/Na] = -2 to 0.6 Miting: SpeciestAM /(disk) He-burning, Z.P [O/Na] = 3120 to 750 0.2 to 5.5 [O/Na] = -29.0 10⁻³ to 8.0 10⁵ [O/Na] = -2Ro (surface) (surface)

Prantzos & Charbonnel 2006; Decressin et al. 2007; Krause et al. 2012,2013

Asymptotic giant branch stars (M ~ 5-6 M_{\odot})

 $\circ +$

Revised cartoon picture of GC formation

After a few 10⁶ years, a star cluster is born!

Ist generation stars lose "polluted" gas

Revised cartoon picture of GC formation

I st generation stars lose "polluted" gas. Polluted gas accumulates at the centre of cluster. 2nd generation of stars form

Problem: the mass budget

Is it really possible to form the observed numbers of enriched stars out of ejecta from AGB (or massive) stars?

Total mass of a stellar population:

$$M = \eta \int_{m_{\min}}^{m_{\max}} m \phi(m) \, \mathrm{d}m$$

 $\boldsymbol{\eta}$ is a normalisation constant

For a Salpeter IMF:

$$M = \eta \int_{m_{\min}}^{m_{\max}} m^{-1.35} \,\mathrm{d}m$$

$$= \frac{\eta}{0.35} \left(m_{\min}^{-0.35} - m_{\max}^{-0.35} \right)$$

Problem: the mass budget

AGB scenario: only stars with 4 < m/M $_{\odot}$ < 8 produce the "right" abundances (lower masses: 3rd dredge-up modifies CNO sum).

If *all* mass in such stars is used:

$$\frac{M(\text{AGB})}{M(\text{tot})} = \frac{(4M/M_{\odot})^{-0.35} - (8M/M_{\odot})^{-0.35}}{(0.15M/M_{\odot})^{-0.35} - (100M/M_{\odot})^{-0.35}} \approx 7\%$$

For massive stars:

$$\frac{(10M/M_{\odot})^{-0.35} - (50M/M_{\odot})^{-0.35}}{(0.15M/M_{\odot})^{-0.35} - (100M/M_{\odot})^{-0.35}} \approx 11\%$$

The mass budget - I

Formation of the polluted stars:

Initial mass = M_{ini} , all "first generation"

Polluted gas returned = βM_{ini} , $\beta \approx 0.05$ (AGB scenario)

If 2nd gen is formed with 100% efficiency: $M_{2G} = \beta M_{ini}$

After ~I2 Gyr:

If 2nd gen consists only of stars with $M < 0.8 M_{\odot}$: $M_{2G} \sim 0.05 M_{ini}$.

Mass of first gen:
$$M_{IG} \sim \frac{\int_{0.1M_{\odot}}^{0.8M_{\odot}} \Phi(m) \, m \, \mathrm{d}m}{\int_{0.1M_{\odot}}^{100M_{\odot}} \Phi(m) \, m \, \mathrm{d}m} M_{\mathrm{ini}} \sim 0.5 \, M_{\mathrm{ini}}$$

Result: $M_{1G} / M_{2G} \sim 10:1$, not $\sim 1:1$ as observed

Revised cartoon picture of GC formation

Material accumulates in centre of cluster. 2nd generation of stars form

Most (90% or more) of the 1st gen stars become unbound. End result is ~50% 1st gen and ~50% 2nd gen stars

Mass budget: MW halo

- Present-day mass of GCs ~ 2.8×10⁷ M_☉ (e.g. Kruijssen & Portegies Zwart 2009).
 If 1/2 GC stars are 2nd gen → ~1.3×10⁸ M_☉ "lost" 1st gen. stars
- Present-day mass of halo field stars ~ 10⁹ M_☉ (e.g. Suntzeff et al. 1991)
- ~2-3% halo stars with anomalous abundances, possibly from disrupted GCs (Carretta et al. 2010; Martell & Grebel 2010)
- 20%-50% of the halo may consist of dissolved GCs (Martell et al. 2011; Gratton et al. 2012) - based on chemistry alone

Modelling the integrated light of star clusters

Adding EWs

How do we calculate the strength (EW) of lines in composite spectra (i.e. the sum of spectra of individual stars)?

Recall def. of EW:
$$W = \int \left(1 - \frac{F_{\lambda}}{F_C}\right) d\lambda$$

Sum of two spectra:

$$W = \int \left(1 - \frac{F_{\lambda,1} + F_{\lambda,2}}{F_{C,1} + F_{C,2}}\right) d\lambda$$

Over a small range in wavelength, $F_{C,2} \approx kF_{C,1}$ where *k* is a constant.

A bit of algebra then leads to

$$W = \frac{1}{1+k} \left[\int \left(1 - \frac{F_{\lambda,1}}{F_{C,1}} \right) d\lambda + k \int \left(1 - \frac{F_{\lambda,2}}{F_{C,2}} \right) d\lambda \right]$$
$$= \frac{1}{1+k} \left(W_1 + kW_2 \right)$$

$$W = \frac{1}{1+k} \left(W_1 + k W_2 \right)$$

The EW of a line in a composite spectrum is the continuum-flux weighted average of the EWs of the line in the individual spectra.

Stellar parameters

Properties of stars may be determined in different ways:

- 1) *Empirically* (e.g. from the colour-magnitude diagram of a cluster)
- 2) *Theoretically* (e.g. from model isochrones)

Sometimes, a mix of the two approaches is used.

Luminosity functions

Number of stars per luminosity bin.

Again, can be determined *empirically* (just "counting the stars") or *theoretically* (from the IMF)

Physical parameters of stars - I

From theory:

A model spectrum will give us *F*. Then, if *R* is known we can get *L*:

 $L_{\lambda} = 4\pi R^2 F_{\lambda}$

Stellar models usually tabulate the surface gravity as a function of M; then we can find R:

$$mg = G\frac{Mm}{R^2}$$
$$g = \frac{GM}{R^2}$$

Physical parameters of stars - II

From observations:

Observables:

- Flux integrated over some wavelength range, $\int_{\lambda}^{\lambda_2} F_{\lambda} d\lambda$

 $F_{\lambda 1}/F_{\lambda 2}$ - Ratio of fluxes at different wavelengths:

Desired: $R, T_{eff}, \log g$.

Temperature:

Increasing $F_{\rm B}/F_{\rm V} \rightarrow$ increasing $T_{\rm eff}$.

Luminosity:

Bolometric correction:

 $\frac{\int_{\mathrm{all}\lambda}F_{\lambda}\mathrm{d}\lambda}{\int_{V}F_{\lambda}\mathrm{d}\lambda}$

Function of T_{eff} .

We can then find the total *F*. If the distance is known, *L* follows

Radius:

$$L = 4\pi R^2 \sigma T_{\rm eff}^4$$

Spectroscopy of GCs

Low-dispersion spectroscopy - strong features (Lick/IDS system)

- ages,
- metallicities,
- some constraints on detailed chemistry (e.g. [α/Fe])

Larsen et al. (2002) - GCs in Sombrero galaxy

Integrated-light spectroscopy at high resolution

Cluster spectra far superior to Lick/IDS resolution, but blending still significant for many lines \rightarrow Spectral synthesis / full spectral fitting

Abundance analysis from integrated light

- Photometry for individual stars \rightarrow stellar parameters $(T_{eff}, \log g, L)$
- Assume chemical composition:
 - Compute model atmospheres (ATLAS9 ID, LTE, plane parallel, static, etc.)
 - Compute synthetic spectra (SYNTHE)
 - Degrade to instrumental resolution
- Co-add spectra, tune abundances until the model fits the data

The Fornax dSph

5 GCs, M_V ~ -13.1 (Hodge 1961; Mateo 1998)

Total stellar mass formed $M^* \sim 6 \times 10^7 M_{\odot}$ (Coleman & de Jong 2008).

Mass of GCs ~ 10⁶ M $_{\odot}$ (~1.7% of M*)

(image from Letarte et al. 2006)

The Fornax GCs

HST WFPC2+WFC3 F343N/F555W/F814W

~24 pc

Metallicities of Fornax GCs

Larsen et al. (2012)

VLT/UVES integrated-light drift-scan spectra

Black dotted curves: Observed spectra

<u>Blue curves:</u>

Best-fitting integratedlight model spectra based on:

- Observed CMDs
 ATLAS9+SYNTHE
- model atmospheres +synthetic spectra

Metallicities from high-dispersion spectroscopy

	\square				
	[Fe/H]	[Ca/Fe]	$v_r ({\rm km}{\rm s}^{-1})$	Source	
Fornax 1	-2.5 ± 0.1	$+0.15 \pm 0.04$	59 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 2	-2.1 ± 0.1	$+0.20 \pm 0.03$	64 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 3	-2.3 ± 0.1	$+0.25 \pm 0.08$	60.4 ± 0.2	This work	Integr. light
Fornax 4	-1.4 ± 0.1	$+0.13 \pm 0.07$	47.2 ± 0.1	This work	Integr. light
Fornax 5	-2.1 ± 0.1	$+0.27 \pm 0.09$	60.6 ± 0.2	This work	Integr. light

- Fornax 1, 2, 3, 5 all have [Fe/H] < -2
- Field star metallicities peak near [Fe/H] = -1 (Battaglia et al. 2006; Kirby et al. 2011).

Larsen et al. (2012)

GCs and field stars in Fornax

Field stars: Battaglia et al. (2006), Ca II triplet spectroscopy. GCs: Letarte et al. (2006); Larsen et al. (2012)

Field stars and GCs in Fornax: Metallicity distributions

Larsen et al. (2012, A&A 544, L14) Field stars: Battaglia et al. (2006), corrected for spatial coverage.

GCs: Letarte et al. (2006), Larsen et al. (2012)

For [Fe/H] < -2: Mass in

- Field stars: ~ 3×10⁶ M_{\odot}
- GCs $\sim 1 \times 10^{6} M_{\odot}$

About 1/5-1/4 of all metal-poor stars in Fornax dSph *currently* belong to F1+F2+F3+F5.

(Milky Way halo: about 2-3%)

Difficult to accommodate large amount of cluster mass loss/ dissolution in Fornax dSph.

The mass budget - II

Need to lose 9 out of 10 IG stars to get $M_{IG,GC} / M_{2G} \sim 1:1$

Fraction of stars still in GC is then:

 $(M_{IG,GC}+M_{2G})/(M_{IG}+M_{2G})=2/11 \sim 18\%$

We have assumed:

- Extreme SFE: 100% of AGB ejecta form new stars
- Highly unusual IMF: no 2G stars with $m > 0.8 M_{\odot}$.
- No 2G stars lost from cluster (but 90% of IG)
- No other field stars or disrupted GCs

Other cases: The WLM dlrr

D(WLM-Milky Way)~925 kpc D(WLM-M31) ~ 950 kpc Near edge of Local Group $M_V \sim -14.5$

1 old GC: M_V =-9.0, $M\sim 6\times 10^5 M_{\odot}$ (Humason et al. 1956; Ables & Ables 1977; Sandage & Carlson 1985; Larsen et al. 2014a)

Na in WLM GC

Integrated-light [Na/Fe] in WLM GC is similar to average [Na/Fe] for Milky Way GCspenhanced compared to field

WLM: field stars vs GC

Field stars:

Stellar mass M* ~ 1.6×107 M_☉ (Zhang et al. 2012)

<[Fe/H]> = -1.28 8% of RGB stars have [Fe/H]<-2

(Leaman et al. 2013, Ca II IR triplet spectroscopy of RGB stars)

Globular cluster:

 $M_{GC} \thicksim 6 \times 10^5 \ M_{\odot}$

Metal-poor ([Fe/H]~-2.0)

GC accounts for 17%-31% of metal-poor stars

(Larsen et al. 2014a)

Globular Clusters with the E-ELT

Cen A - the nearest giant elliptical

Estimated total of ~1000-2000 globular clusters (e.g. Harris et al. 2004)

The majority are within reach of MOSAIC (about half with V < 20.5)

Assembly of halos and GC systems

Kinematic substructure related to chemical composition?

Romanowsky et al. (2012): Keck/DEIMOS kinematics for 488 GCs in M87

Meaningful comparison with theory requires statistical samples of galaxies along (and off) the Hubble sequence

by François Hammer

IUI IIIaliuii IIIslui ICs