Thanks to http://johbuc6.coconia.net/mediawiki2dokuwiki.php for conversion
Wed 27/10
Nicky: grid based: ~200 grids of ? models
Stable MT:
when stable?
Joke: if q<q_crit - monitor q and contact during MT
Ashley: For mass transfer – MT rate depends on binary parameters; system loses 50% for non-degenerate accretors, Eddington-limited for deg.don.
AM
<math>frac{dot{J}_mathrm{orb}}{J_mathrm{orb}} = eta frac{dot{M}_mathrm{d}}{M_mathrm{bin}}</math>
CE:
Can a HMXB with RLOF and q~20 have stable MT?
Bondi-Hoyle accretion:
Comparison of the six binary runs
1: 30 days:
S: stable MT, C: CE
{| border=“1”
!
! Ashley
! Joke
! Nicki
! Silvia
! 1: 30 d
! 2: 150d
! 3: 500d
! 4: 1700d
! 5: 2000d
! 6: 10000d, a=3985
Homework:
Check treatment of:
overshooting
mixing length
core definition
computation of τth, τnuc
wind mass loss
mixing during accretion
Compute:
Mi-Mf relation
single-star evolution:
1.5, 5.0, 7.5 Mo
get R, Mc, t, M, evolutionary phase
Thu 28/10
Final goals:
paper showing:
all codes give the same answer when making the same assumptions
explain differences due to different stellar-evolution tracks
list/explain what different assumptions cause the differences
conservative MT or CE
α λ = 1
no
MB, tides, wind accretion, eccentricity…
IMF: Kroupa (Kroupa Tout & Gilmore 1993):
q: uniform: 0.1Mo/M1 - 1.0
a: uniform: uniform in log a, 5-10^4 Ro
whole population, after the formation of WD1 and WD2
(initially scatter?)/grey scale plots
Same, but non-conservative with β=0.5, η=1.0
Fri 29/10