Planet detections with the transit method

Carsten Dominik
University of Amsterdam
Radboud University Nijmegen

What are you going to do on June 6 2012?

Venus in front of the Sun in 2004 (again in 2012
and 2117)

The transit method

Transit Corot 7b

Exo-planet transits Periodicity

- The transit is periodic with the orbit of the planet.
- Period from Kepler's laws $P^{2}=M_{*} a^{3}$
- $a=$ distance star planet in astronomical Unitis (distance Sun Earth)
- $P=$ orbital period in years
- $M_{*}=$ Stellar Mass in Solar mass units

Exo-planet transits Duration of a transit

- For a central transit
$t_{c}=13 d_{*} \sqrt{\left(\frac{a}{M_{*}}\right)}=13 \sqrt{a}$ hours
- $\mathrm{d}^{*}=$ diameter of the star in solar diameters

Exo-planet transits Depth of the transit

- Fractional change in flux from the star

$$
1-\frac{F_{\mathrm{transit}}}{F_{0}}=\left(\frac{R_{p}}{R_{*}}\right)^{2}
$$

Probability that we do see the transit

Simple estimate: $\mathrm{P}=\alpha / \pi \sim \mathrm{d}_{*} /(\pi \mathrm{a})$ Wrong!

Better estimate

$$
P=\frac{2 \pi a d_{*}}{4 \pi a^{2}}=\frac{d_{*}}{2 a}=\alpha
$$

So this is 3.14 times larger than the simple estimate

	Orbital period	S-m axis	Transit time	Transit depth	Geom prob.	
(Years)	(AU)	hrs	$(\%)$	$(\%)$		
Planet						
mercury	0.241	0.39	8.1	0.0012	1.19	
venus	0.615	0.72	11.0	0.0076	0.65	
earth	1.000	1.00	13.0	0.0084	0.47	
mars	1.880	1.52	16.0	0.0024	0.31	
jupiter	11.86	5.20	29.6	1.01	0.089	
saturn	29.5	9.5	40.1	0.75	0.049	
uranus	84.0	19.2	57.0	0.135	0.024	
neptunus	164.8	30.1	71.3	0.127	0.015	

Exoplanets with Corot

Corot exo-7b: Super-earth

- Porb $=20$ hours
- R: 1.6 R
(Earth)

(1) M: 5 M
(Earth)
- NASA, photometry of $>150,000$ stars

Kepler

- Looking for Earth-like planets in transit
- $50 \mu \mathrm{mag}$ in 6 hours; 30 minute cadence
- First ~ 210 days went public this Sept.

Pre-Kepler Transiting Planets - 2009

LeymertPlanet Candidates as of June 2010
 Nhsa

Eepmot Planet Candidates as of Feb 2011

Keymter Planet Candidates as of Dec 2011 Mnsis

Sizes of Planet Candidates

Super Earth-size - $\underset{(+136 \%)}{680}$

Earth-size - 207

Eseypter Candidates in the Habitable Zone

Ten Near-Earth-Size Candidates in the Habitable Zone (185-303 K)

Common False Positives

-KOI-126

Candidate Multi-Planet Systems

Numbers of multiples: Obital Period in days
Numbers of multiples:
271 doubles, 85 triples, 30 quads, 2 qunits \& 1 w/ six! Borucki et al. 2011b Lissauer et al. 2011b

The Kepler Orrery

 credit: D. Fabrycky$$
\mathrm{t}[\mathrm{BJD}]-2454900=65.0
$$

351

 $(\square)(\square)$ 433

Kepler-11: 6 Transiting Planets

Kepler-11

Lissauer, Fabrycky, Ford et al. 2011

Composition of Kepler-11 Planets

Kepler-16: A Transiting Circumbinary Planet

Laurance R. Doyle1, Joshua A. Carter², Daniel C. Fabrycky ${ }^{3}$, Robert W. Slawson', Steve B. Howell ${ }^{4}$, Joshua N. Winn ${ }^{5}$, Jerome A. Orosz ${ }^{6}$, Andrej Pr'sa7, William F. Welsh ${ }^{6}$, Samuel N. Quinn ${ }^{1}$, David Latham ${ }^{1}$, Guillermo Torres ${ }^{4}$, Lars A. Buchhave ${ }^{\text {e }}$
${ }^{10}$, Geoffrey W. Marcy ${ }^{11}$, Jonathan J. Fortney ${ }^{12}$, Avi Shporer ${ }^{13,14}$, Eric B. Ford ${ }^{15}$, Jack J. Lissauer ${ }^{4}$, Darin Ragozzine ${ }^{2}$, Michael Rucker ${ }^{16}$, Natalie Batalha ${ }^{10}$, Jon M. Jenkins ${ }^{1}$, William J. Borucki4, David Koch ${ }^{4}$, Christopher K. Middour ${ }^{17}$, Jennifer R. Hall ${ }^{17}$, Sean McCauliff ${ }^{17}$, Michael N. Fanelli's, Elisa V. Quintana', Matthew J. Holman ${ }^{1}$, Douglas A Caldwell', Martin Still ${ }^{11}$, Robert P. Stefanik ${ }^{4}$, Warren R. Brown ${ }^{1}$, Gilbert A. Esquerdo ${ }^{1}$, Sumin Tang ${ }^{1}$, Gabor Furesz ${ }^{1,19}$ John C. Geary ${ }^{4}$, Perry Berlind ${ }^{20}$, Michael L. Calkins ${ }^{20}$, Donald R. Short ${ }^{21}$, Jason H. Steffen ${ }^{22}$, Dimitar Sasselov ${ }^{4}$, Edward W. Dunham ${ }^{23}$, William D. Cochran ${ }^{24}$, Alan Boss ${ }^{25}$, Michael R. Haas ${ }^{4}$, Derek Buzasir ${ }^{26}$, Debra Fischer ${ }^{27}$

Kepler-16

Eccentricities, Inclinations \& Multiplicity

Three key probes of planet formation:

- Eccentricity distribution (+ stellar densities) \rightarrow Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ Period distribution) \rightarrow

Frequency of multiply transiting systems

- Frequency of multiple planet systems + Eccentricity Distribution (+ Period distribution) \rightarrow Distribution of TTV signatures
One complex inverse problem!
(Observables, Desired Distributions, Both)

Atmosphere:

The tricks of transmission spectroscopy:

The actual detection (with the HST):

Charbonneau et al. (2002)

Secondary Transits

Planet TrES-1 Passing Behind Its Star

Transit lightcurve HD189733

Isolating a Planet's Spectrum

HD 189733b

Detection of $\mathrm{H}_{2} \mathrm{O}$

Warm spot: HD 189733b

- Planet is in corotation, warmest spot should be toward star.
- Shifted because of winds

Map of surface temperature HD 189733b

