Planet detections with the transit method

Carsten Dominik University of Amsterdam Radboud University Nijmegen

What are you going to do on June 6 2012?

Venus in front of the Sun in 2004 (again in 2012 and 2117)

The transit method

Exo-planet transits Periodicity

The transit is periodic with the orbit of the planet.

Period from Kepler's laws

$$P^2 = M_* a^3$$

- a = distance star planet in astronomical
 Unitis (distance Sun Earth)
- \oslash P = orbital period in years
- M* = Stellar Mass in Solar mass units

Exo-planet transits Duration of a transit

Sor a central transit

$$t_c = 13d_*\sqrt{\left(\frac{a}{M_*}\right)} = 13\sqrt{a}$$
 hours

 $d^* = diameter of the star in solar diameters$

Exo-planet transits Depth of the transit

Fractional change in flux from the star

 $1 - \frac{F_{\text{transit}}}{F_0} = \left(\frac{R_p}{R_*}\right)^2$

Probability that we do see the transit

Better estimate

So this is 3.14 times larger than the simple estimate

	Orbital period	S-m axis	Transit time	Transit depth	Geom prob.
	(Years)	(AU)	hrs	(%)	(%)
Planet					
mercury	0.241	0.39	8.1	0.0012	1.19
venus	0.615	0.72	11.0	0.0076	0.65
earth	1.000	1.00	13.0	0.0084	0.47
mars	1.880	1.52	16.0	0.0024	0.31
jupiter	11.86	5.20	29.6	1.01	0.089
saturn	29.5	9.5	40.1	0.75	0.049
uranus	84.0	19.2	57.0	0.135	0.024
neptunus	164.8	30.1	71.3	0.127	0.015
				and a superior	

Exoplanets with Corot

Corot exo-7b: Super-earth

Porb = 20 hours
R: 1.6 R (Earth)
M: 5 M (Earth)

Kepler

- NASA, photometry of >150,000 stars
- Looking for Earth-like planets in transit
- 50µmag in 6 hours; 30 minute cadence
- First ~210 days went public this Sept.

Pre-Kepler Transiting Planets - 2009

Orbital Period in days

8885

Ordital Period in days

Equilibrium Temperature [K]

Ten Near-Earth-Size Candidates in the Habitable Zone (185-303 K)

Common False Positives

For expected rates see: Borucki et al. 2011b Morton & Johnson 2011 Howard et al. 2011

Kepler-11: 6 Transiting Planets

Composition of Kepler-11 Planets

Kepler-16: A Transiting Circumbinary Planet

Laurance R. Doyle¹, Joshua A. Carter², Daniel C. Fabrycky³, Robert W. Slawson¹, Steve B. Howell⁴, Joshua N. Winn⁵, Jerome A. Orosz⁶, Andrej Pr[×]sa⁷, William F. Welsh⁶, Samuel N. Quinn⁸, David Latham⁸, Guillermo Torres⁸, Lars A. Buchhave⁹, 10, Geoffrey W. Marcy11, Jonathan J. Fortney12, Avi Shporer13,14, Eric B. Ford15, Jack J. Lissauer4, Darin Ragozzine², Michael Rucker¹⁶, Natalie Batalha¹⁶, Jon M. Jenkins¹, William J. Borucki⁴, David Koch⁴, Christopher K. Middour¹⁷, Jennifer R. Hall¹⁷, Sean McCauliff¹⁷, Michael N. Fanelli¹⁸, Elisa V. Quintana¹, Matthew J. Holman⁸, Douglas A. Caldwell¹, Martin Still¹⁸, Robert P. Stefanik⁸, Warren R. Brown⁸, Gilbert A. Esquerdo⁸, Sumin Tang⁸, Gabor Furesz^{8,19}, John C. Geary⁸, Perry Berlind²⁰, Michael L. Calkins²⁰, Donald R. Short²¹, Jason H. Steffen²², Dimitar Sasselov⁸, Edward W. Dunham²³, William D. Cochran²⁴, Alan Boss²⁵, Michael R. Haas⁴, Derek Buzasi²⁶, Debra Fischer²⁷

Eccentricities, Inclinations & Multiplicity

Three key probes of planet formation:

- Eccentricity distribution (+ stellar densities) → Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ Period distribution) → Frequency of multiply transiting systems
- Frequency of multiple planet systems + Eccentricity Distribution (+ Period distribution) → Distribution of TTV signatures

One complex inverse problem!

(Observables, Desired Distributions, Both)

Atmosphere:

The tricks of transmission spectroscopy:

The actual detection (with the HST):

Charbonneau et al. (2002)

Extrasolar Planet Eclipse (artist's rendition)

ssc2005-09b

Transit lightcurve HD189733

Isolating a Planet's Spectrum

HD 189733b

\odot Detection of H₂O

Finetti et al. 2007, Nature 448, 169

Warm spot: HD 189733b

 Planet is in corotation, warmest spot should be toward star.

Shifted
 because of
 winds

Knutson et al. 2007, Nature 447, 183

(Grid Spacing: 30°)

Global Temperature Map for Exoplanet HD 189733b NASA / JPL-Caltech / H. Knutson (Harvard-Smithsonian CfA)

Spitzer Space Telescope • IRAC ssc2007-09a