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Noncommutative geometry

in physics: in mathematics

Einstein’s general theory of relativity Riemannian geometry

Elementary particles (Standard Model) Noncommutative geometry

x · y 6= y · x



A fermion in a spacetime background

Spacetime is a (pseudo)
Riemannian manifold M:
algebra of local coordinates xµ

xµ · xν(p) = xµ(p)xν(p), etc ..

Propagator is described by Dirac
operator ∂/M , acting on fermion
wavefunctions ψ:

S [ψ] =

∫
ψ∂/Mψ

 EOM: ∂/Mψ = 0.
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The Riemannian metric

Conventionally, the Riemannian distance between two points p and q
in space(time) is given by the smallest length of curves connecting p
and q (geodesics).

On a (Euclidean) real line the distance is of course d(p, q) = |p − q|:
b b

p q

Another way of writing the distance on a line is by maximizing over
functions of slope ≤ 1:

d(p, q) = sup{|f (p)− f (q)| : |df /dx | ≤ 1}

b b

p q

f

This generalizes to any
spacetime manifold, using
the Dirac operator ∂/M and
its spectrum of eigenvalues
to make sense of ’functions
of slope ≤ 1’.
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Intermezzo: History of the meter

Meter defined in 1791 as 10−7 times
one quarter of the meridian of the
Earth.

Expedition in 1792: measuring the arc
of the meridian between Barcelona-
Duinkerken, at the beginning of the
French revolution... a

aAdler (2002)



Meter made concrete by platinum bar “mètre-étalon”,
saved (from 1889) in Pavillon de Breteuil near Paris:



Practical objections mètre-étalon (natural variations):

1960: meter defined as a multiple of a transition wavelength in
Krypton 86Kr:



1967: second = 9192631770 periods of a transition radiation
between two hyperfine levels in Caesium-133.

1983: Definition of the meter as the distance that light travels in
1/299792458 second...



1967: second = 9192631770 periods of a transition radiation
between two hyperfine levels in Caesium-133.

1983: Definition of the meter as the distance that light travels in
1/299792458 second...



So, measuring
distances by look-
ing at spectra



NCG and Particle Physics

Replace spacetime by spacetime × noncommutative space: M × F

F is considered as internal space (Kaluza–Klein like)

F is described by a noncommutative algebra, such as M3(C), just as
spacetime is described by coordinate functions xµ(p).

‘Propagation’ of particles in F is described by a Dirac-type operator
∂/ F which is actually simply a matrix.

Spectral definition of Riemannian distance generalizes to such
noncommutative spacetimes.
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Example: electroweak theory

Algebra describing F is C⊕H:

A complex number z

A quaternion q = q0 + iqkσ
k ; in terms of Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)

It describes a two-point space, with internal structure:

b b

21

z q

Matrix ∂/+
F =

( ϕ1 ϕ2
−ϕ2 ϕ1

)
.

Distance d(1, 2) = inverse of largest eigenvalue of ∂/ F
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But how to get physics from this?

Given such a space M × F , with Dirac operators ∂/M and ∂/ F , a Lagrangian
is given by an extremely simple formula12

:

Trace χ (∂/M + ∂/ F )

for some cut-off function χ, say, of the form

χ

Λ

The function χ gives rise to the coupling constants for the physical
theory described by the Lagrangian.

1Chamseddine-Connes. hep-th/9606056
2Connes-Marcolli (2008)



But how to get physics from this?

Given such a space M × F , with Dirac operators ∂/M and ∂/ F , a Lagrangian
is given by an extremely simple formula12 :

Trace χ (∂/M + ∂/ F )

for some cut-off function χ, say, of the form

χ

Λ

The function χ gives rise to the coupling constants for the physical
theory described by the Lagrangian.

1Chamseddine-Connes. hep-th/9606056
2Connes-Marcolli (2008)



But how to get physics from this?

Given such a space M × F , with Dirac operators ∂/M and ∂/ F , a Lagrangian
is given by an extremely simple formula12 :

Trace χ (∂/M + ∂/ F )

for some cut-off function χ, say, of the form

χ

Λ

The function χ gives rise to the coupling constants for the physical
theory described by the Lagrangian.

1Chamseddine-Connes. hep-th/9606056
2Connes-Marcolli (2008)



Commutative NCG

Consider only M:

Trace χ(∂/M)

= Λ4 χ4

2π2

∫
M

√
gdx+Λ2 χ2

24π2

∫
M

√
gRdx

+
χ0

320π2

∫
M

√
gCµνρσC

µνρσdx +O(Λ−1)

which is (in red) the Einstein-Hilbert action of general relativity, with
EOM:

Rµν −
1

2
Rgµν+γgµν = 0

For this, we identify
Λ2χ2

24π2
=

1

16πG
(thus, cutoff Λ ∼ Planck energy).
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Cosmological applications

Consider the product M × F with the electroweak internal space

: at
each point p in M we have ’coordinates’:

(zµ(p), qµ(p)) ∈ C⊕H.

and ‘Dirac operators’ ∂/M and ∂/+
F =

( ϕ1 ϕ2
−ϕ2 ϕ1

)
The action now has (amongst others) an additional term involving
the Higgs field H = (φ1 φ2):∫ [

1

2
|DµH|2 − µ2|H|2 − λ|H|4−ξ

∫
R|H|2

]
√
gdx

Slow-roll inflation34

3De Simone-Hertzberg-Wilczek hep-ph/0812.4946
4Marcolli-Pierpaoli. arXiv:0903.3683
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Noncommutative geometry of the Standard Model
Let the noncommutative space F be described by the noncommutative
algebra C⊕H⊕M3(C)

Trace χ(∂/M + ∂/ F ) gives the full Standard Model Lagrangian,
including Higgs and minimally coupled to gravity5

The three coupling constants are all expressed in terms of χ0,
implying the relation:

g2
3 = g2

2 =
5

3
g2
1

Thus, the noncommutative model describes the SM at GUT (but no
leptoquarks).

Another relation is given between the Higgs self-coupling and g3:

λ ∼ 4

3
g2
3

5[Connes-Marcolli (2008)]
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Relation g2
3 = g2

2 =
5

3
g2
1

almost holds at GUT-scale:

We interpret the NC model as the SM at GUT-scale. Then, the relation
λ ∼ 4g2

3 /3 can be RG-run down to give a prediction of the mass of the
Higgs:

m2
H = 8λ

M2
W

g2

which gives 167 GeV . mH . 176 GeV.

6

- Similarly, obtain postdiction: mt < 180 GeV.

6Connes-Marcolli-Chamseddine (2007) vS-vd Dungen (2011)
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Gravitational waves

As in GR, the noncommutative model describes gravitational waves:

−3

(
ȧ

a

)2

+ 2

(
ȧ

a

)
ḣ + ḧ − 1

2
∇2h − ακ

6a2
∇2(∂2t −∇2)h = κ2T00.

with gµν = a(t)2diag{−1, δij + hij}, h = hii .

The constants α and κ are
the coefficients of the conformal and Einstein–Hilbert term, respectively.
Two relevant examples:

a ∼ 1: deviation from rate of energy loss in (circular) binary pulsars.7

Dominant κ (varying with Λ) and a ∼ Λ−1 = t−1/2:

h(t) =
4π2T00

288χ2
t3 + B + A log t +

3

8
(log t)2

as opposed to conventional h(t) = 2πGT00t
2 + · · · .8

7Nelson-Ochoa-Sakellariadou. arXiv:1005.4276
8Marcolli-Pierpaoli. arXiv:0903.3683
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Noncommutative model falsified by Tevatron/LHC?

Well, let’s wait for the Higgs to be found, or not. In any case, the Higgs
mechanism is derived, just like gravity, gauge bosons, etc. from geometry.

For now, let us look at the assumptions underlying these predictions:

1 Big desert hypothesis all the way up to GUT.

2 RG-equations of the SM: no intrinsic method of quantization. Also,
one should take RG-equation for νSM.

Suggesting for the following improvements:

1 Introduce a variant of the NC SM model (eg. SUSY)

2 Describe the quantized Standard Model in terms of NCG.
 quantization of (nc) gravity
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NCG and SUSY

Thijs van den Broek (Nikhef, RU) is working at a NC description of
SUSY-models.

Toy model N = 1 super-Yang–Mills: F described by M3(C), squarks
appear in ∂/ F .

Towards MSSM: Gauge symmetry requires F of SM unchanged,
sfermions appear in ∂/ F .

Potential reduction of free parameters in MSSM, as before in SM.

SUSY appears to be automatically broken.
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Outlook

NCG of the MSSM.

F has ‘spin dimension’ 6: relation to Calabi–Yau compactifications?

Quantization: since NCG is based in mathematics, hard problem
(quantization of even Yang–Mills theory not well-defined).

Interesting applications to cosmology to further explore: Higgs
coupling to scalar curvature, higher-order and conformal gravity.


