Magnetosphere – accretion disk interaction in X-ray binaries

Lennart van Haaften Radboud University Nijmegen

Outline

- Introduction
- Uncertainties: the magnetosphere
- Jan's work on magnetic links connecting the magnetosphere to the accretion disk
- Our work on the evolution of ultracompact X-ray binaries

Introduction: accreting magnetic stars

- Various types:
 - protostars
 - cataclysmic variables
 - X-ray binaries

Important because:

- Accretion
- Spin regulation
- Disk structure

Image credits: Mark A. Garlick

The magnetosphere – a simple picture

• Geometry: spherical accretion vs. disk accretion

 Field dominates spherically infalling gas

Disk dominates field

Velocities – a simple picture

 Field lines can move either slower or faster than disk matter

Velocities – a simple picture

- Field lines can move either slower or faster than disk matter
- Spin up

Velocities – a simple picture

 Field lines can move either slower or faster than disk matter

Spin down

Complications

Selection of Jan's work (with J.J. Aly)

- Inside corotation radius: blob accretion
- Angular momentum transport

Aly & Kuijpers 1990 A&A, 227, 473

More work by Jan: Magnetic flares

- Connections
 between the
 stellar field and
 the disk field
- Differential rotation causes shear and reconnections

Aly & Kuijpers 1990 A&A, 227, 473

Two other models

• Andersson et al. 2005: high accretion rate model

Radiation pressure

• D'Angelo & Spruit 2011

(arXiv:1102.3697)

Trapped disk, mainly for strong magnetic field

Andersson et al. 2005 MNRAS, 361, 1153

Recent work with Jan, and G. Nelemans, R. Voss, M. Wood:

ultracompact X-ray binaries (UCXBs)

What are ultracompact X-ray binaries?

- UCXB: Roche-lobe filling white dwarf losing mass to a neutron star
- Gravitational wave radiation forces mass transfer
- Donor and orbit expand with time

Understanding UCXB evolution

The problem:

 Our population synthesis model overpredicts the number of visible UCXBs

Possible explanations:

- UCXBs are destroyed at a very low mass ratio
- UCXBs become (often) invisible at a very low mass transfer rate → propeller effect?

UCXB accretion disk evolution

Propeller effect may reduce or stop accretion, but only if the magnetosphere is large enough

Residual equatorial B-field = $10^{8.5}$ G

UCXB accretor spin evolution

Comparison with the sample of known millisecond pulsars in UCXBs

Residual equatorial B-field = $10^{8.5}$ G