A Universe out of Nothing? Origin and Evolution of the Universe

Koen Kuijken Sterrewacht Leiden, Universiteit Leiden

The expanding Universe

• **Evolution** of the Universe is a fundamental, inevitable consequence of Einstein Gravity (de Sitter, Lemaitre)

- Observed by Hubble, Slipher (1920's)
- The universe expands

The expanding Universe

- One millionth of one percent over human lifetime
- Consequences:
 - radiation gets stretched (redshift)
 - Universe cools (particle physics, phase changes)
 - gravitational attraction weakens

• This can all be observed!

Observations

- Hubble's law: distances, redshifts (cosmography)
- Cosmic background radiation (afterglow of hot beginnings)
- Nucleosynthesis of light elements (nuclear fusion)
- Large-scale matter distribution (clumping by gravity)
- Properties/evolution of galaxies (complex!)

 Very strongly driven by technological advances in telescopes, detectors, computers

Dark matter in galaxies

Fast orbits in outskirts, so extra gravity

Dark matter and large scale structure

- Matter clumps together under gravity
- Initial conditions were very homogeneous
- The more mass, the more clumping

• Supercomputer simulations

Gravitational instability

Gravitational instability

€

• "The rich get richer"

(Re)combination, Reionisation

- At temperature ~3000K (380.000 yr) hydrogen becomes neutral
 - Universe becomes transparant. Astronomy!
- Matter can start to clump
 Cosmic background radiation (CMB)
 snapshot of 'noise'
 information about pre- and post-history

LOFAR

 Around I billion yr: UV radiation from first stars, quasars etc: reionisation

Calculating forward

ca 1.5 proton masses/m³, and 14 bln yrs, needed ca 30x as much as 'visible' (stars and gas) (not enough to stop expansion of the Universe)

50 Mpc/h

Radiation era

- Until 60.000 yr after Big Bang most of the energy was in radiation
 - Radiation loses energy through redshift
 - Eventually, matter dominates
 - Still millions of photons per atom today!

Nucleosynthesis

- Between 10s en 3min first atomic nuclei are formed; then this fusion reactor freezes
- Reaction rate depends on density
- Abundances fit for density of ~ 0.3/m³

Neutrino's

- Form of 'radiation'
 - Free-stream through Universe after ~ 0.1 sec
 - Cosmology measures number of neutrino families: 3
 - Neutrino mass influences large-scale structure (mass<0.25meV, cosmology beats experiments!)

High-energy physics lab

 During radiation era Universe cools tremendously: from 10²⁸K to 10⁴K. (10¹²TeV to 1eV).

• Couldron of elementary particles! 'Greek alphabet soup'.

Origin of matter/antimatter asymmetry?

Dark energy

Dark energy

- The expansion of the Universe is slowed down by gravity
- Measure deceleration = measure matter density
- Surprise: Expansion accelerates!!

Dark energy

- The expansion of the Universe is slowed down by gravity
- Measure deceleration = measure matter density
- Surprise: Expansion accelerates!!

Dark energy??

• Clearly required by the data (also CMB)

- Cosmological constant in Einstein theory?
- Dynamic ingredient of the Universe?
 - Same amount everywhere?
 - Same amount at all times?

• ESA Euclid mission (2020+)

Standard model of cosmology

 6 parameters determine the 'global' properties of the Universe

density of atoms density of dark matter density of dark energy amplitude of fluctuations spectrum of fluctuations scatter due to reionisation

Image credit: ESA/Planck collaboration

Describe ≠ explain

What are dark matter, dark energy?

Initial conditions?

Why is the Universe so homogeneous?

Why is de curvature of space ~ 0 ?

Inflation

- Massive expansion in tiny fraction of a second (x billion billion in trillionth of a trillionth of a trillionth of a second)
- Soon after epoch of quantum gravity
- Many theories!
- Could be observed with gravitational waves
- Very neat explanation for flatness, initial conditions, homogeneity
- Initial fluctuations = inflated quantum noise

"A universe out of nothing"

Dank u!