

Introduction into
Time Series Analysis
of Unequally-spaced and Gapped
Astronomical Data

1. Some preliminaries

Simulated data (dots) representing a periodic signal with frequency $\nu=0.123456789 \mathrm{~d}^{-1}$. The dotted line is a harmonic fit for this frequency. The full line represents a fit with the frequency $2.123456789 \mathrm{~d}^{-1}$.

1. Some preliminaries

Simulated gapped data representing a typical time series for a singlesite campaign of a pulsating star.

1. Some preliminaries

Real data representing a typical time series for a space campaign of a pulsating star.

2. Methods based on Phase Dispersion Minimisation

Consider quantity x observed at $t_{i}, x_{i}\left(t_{i}\right)$ with $i=1, \ldots, N$.
The phase $\varphi\left(t_{i}\right)$ for cyclic frequency f or the period $P=1 / f$ with respect to the reference epoch t_{0} is:

$$
\varphi\left(t_{i}\right)=\left[f\left(t_{i}-t_{0}\right)\right]=\left[\frac{t_{i}-t_{0}}{P}\right]
$$

with $0 \leq \varphi<1$.
A plot of $x_{i}\left(t_{i}\right)$ as a function of $\varphi\left(t_{i}\right)$ is called a phase diagram.
For test period P : divide phase interval $[0,1]$ in M equal bins with bin index $J_{i}=I N T\left(M \varphi_{i}\right)+1, \operatorname{INT}(x) \equiv x-[x]$.

Suppose that the j-th bin contains N_{j} measurements.

Per bin:

$$
\begin{gathered}
\overline{x_{j}}=\sum_{i=1}^{N_{j}} \frac{x_{i j}}{N_{j}}, \quad V_{j}^{2}=\sum_{i=1}^{N_{j}}\left(x_{i j}-\overline{x_{j}}\right)^{2}=\sum_{i=1}^{N_{j}} x_{i j}^{2}-N_{j}{\overline{x_{j}}}^{2} \\
s_{j}^{2}=\frac{V_{j}^{2}}{N_{j}-1}
\end{gathered}
$$

with $x_{i j}$ the observation x_{i} with bin index $J_{i}=j$.
For whole dataset, \bar{x}, V^{2} and s^{2}, are defined as

$$
\begin{gathered}
\bar{x}=\sum_{i=1}^{N} \frac{x_{i}}{N}, V^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{N} x_{i}^{2}-N \bar{x}^{2} \\
s^{2}=\frac{V^{2}}{N-1}
\end{gathered}
$$

For the M bins:

$$
V_{M}^{2}=\sum_{j=1}^{M} V_{j}^{2}, \quad V_{G}^{2}=\sum_{j=1}^{M} N_{j}\left(\overline{x_{j}}-\bar{x}\right)^{2} .
$$

Thus $V^{2}=V_{M}^{2}+V_{G}^{2}$.
$\overline{x_{j}} \neq \bar{x}$ for good period: $V_{G}^{2} \simeq V^{2}$
$\overline{x_{j}} \simeq \bar{x}$ for bad period: $V_{G}^{2} \ll V^{2}$
search maximum of $V_{G}^{2} \Leftrightarrow$ search minimum of V_{M}^{2}

Better: bin-cover structure (N_{b}, N_{c}): divide phase diagram in N_{b} bins of length $1 / N_{b}$ and apply this partition N_{c} times, with each partition shifted over $1 / N_{b} N_{c}$

Define

$$
\Theta \equiv \frac{\sum_{j=1}^{M}\left(N_{j}-1\right) s_{j}^{2} / \sum_{j=1}^{M} N_{j}-M}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} / N-1} \in[0,1]
$$

where s_{j}^{2} is defined as:

$$
s_{j}^{2} \equiv \frac{\sum_{i=1}^{N_{j}}\left(x_{i j}-\overline{x_{j}}\right)^{2}}{N_{j}-1}
$$

With the introduced notation:

$$
\Theta=\frac{V_{M}^{2} /\left(\sum_{j=1}^{M} N_{j}-M\right)}{V^{2} /(N-1)}=\frac{V_{M}^{2} / N_{c}\left(N-N_{b}\right)}{V^{2} /(N-1)}
$$

A minimum in the Θ-statistic corresponds to a minimum of V_{M}

Geneva V

Statistic $\Theta_{\text {PDM }}$ of the data using 10 bins and 2 covers.

PDM and any other string-length method are sensitive to harmonics and subharmonics ... Be careful!

Phase diagrams for six minima in the $\Theta_{\text {PDM }}: 5.123 d^{-1}$ (upper left), $4.121 \mathrm{~d}^{-1}$ (middle left), $7.129 \mathrm{~d}^{-1}$ (lower left), $2.562 \mathrm{~d}^{-1}$ (upper right), $1.021 \mathrm{~d}^{-1}$ (middle right), $0.244 \mathrm{~d}^{-1}$ (lower right).

3. Methods based on Fourier Analysis

Fourier transform of $x(t)$:

$$
F(f) \equiv \int_{-\infty}^{+\infty} x(t) \exp (2 \pi \mathrm{i} f t) d t
$$

Fourier transform $F(f)$ of sum of harmonic functions with frequencies f_{1}, \ldots, f_{n} and amplitudes A_{1}, \ldots, A_{n} :

$$
x(t)=\sum_{k=1}^{n} A_{k} \exp \left(2 \pi \mathrm{i} f_{k} t\right): \quad F(f)=\sum_{k=1}^{n} A_{k} \delta\left(f-f_{k}\right)
$$

For $x(t)=$ sine with frequency $f_{1}, F(f) \neq 0$ for $f= \pm f_{1}$
For $x(t)=$ sum of n harmonic functions with frequencies f_{1}, \ldots, f_{n}, $F(f)=$ sum of δ-functions $\neq 0$ for $\pm f_{1}, \ldots, \pm f_{n}$

Real data set: $x(t)$ known for a discrete number of times $t_{j}, j=1, \ldots, N$

Left: 10^{6} points over 1000 d , right: 10^{4} points over 10 d , bottom: 4472 points over 10 d .

Fourier transforms of a noiseles time series of a sine function with frequency $5.123456789 d^{-1}$ generated for a finite time span of 10 days and containing one large gap from day 4 until day 6 (top) and from day 2 until day 8 (bottom).

Discrete Fourier transform:

$$
F_{N}(f) \equiv \sum_{j=1}^{N} x\left(t_{j}\right) \exp \left(2 \pi \mathrm{i} f t_{j}\right)
$$

$F_{N} \neq F!$ but connected through window function:

$$
w_{N}(t) \equiv \frac{1}{N} \sum_{j=1}^{N} \delta\left(t-t_{j}\right)
$$

Hence:

$$
\frac{F_{N}}{N}=\int_{-\infty}^{+\infty} x(t) w_{N}(t) \exp (2 \pi \mathrm{i} f t) d t
$$

Discrete Fourier transform of window function $=$ spectral window $W_{N}(f)$:

$$
W_{N}(f)=\frac{1}{N} \sum_{j=1}^{N} \exp \left(2 \pi \mathrm{i} f t_{j}\right)
$$

Discrete Fourier transform $=$ convolution of spectral window and Fourier transform: $F_{N}(f) / N=F(f) * W_{N}(f)$.

If $F(f)=\delta$ at $f_{1}, F_{N}(f) / N$ same behaviour as $W_{N}(f)$ at f_{1} :

$$
F_{N}(f) / N=W_{N}(f) * \delta\left(f-f_{1}\right)=W_{N}\left(f-f_{1}\right)
$$

\Downarrow
Comparison of $W_{N}(f)$ with $F_{N}(f) / N$ near $f_{1} \rightarrow$ is f_{1} is real or not?
If $F(f)=$ sum of $n \delta$-functions:

$$
\begin{aligned}
& \frac{F_{N}(f)}{N}=W_{N}(f) * \sum_{k=1}^{n} \delta\left(f-f_{k}\right)=\sum_{k=1}^{n} W_{N}(f) * \delta\left(f-f_{k}\right) \\
& =\sum_{k=1}^{n} W_{N}\left(f-f_{k}\right)=\frac{1}{N} \sum_{k=1}^{n} \sum_{j=1}^{N} \exp \left(2 \pi \mathrm{i}\left(f-f_{k}\right) t_{j}\right)
\end{aligned}
$$

Hence, $F_{N}(f) / N=$ sum of n spectral windows centered around f_{k}
$W_{N}(f) \neq 0$ at all f (not only at $f_{k}, k=1, \ldots, n$) due to interference

$$
\Downarrow
$$

maxima in periodogram at spurious frequencies due to observing times... ALIAS FREQUENCIES

Most common alias frequencies? Assume $t_{j}=t_{0}+j \triangle t$:

$$
\begin{aligned}
& W_{N}(f)=\frac{1}{N} \sum_{j=1}^{N} \exp \left(2 \pi \mathrm{i} f t_{0}\right) \exp (2 \pi \mathrm{i} f j \triangle t) \\
& \quad=\frac{1}{N} \exp \left(2 \pi \mathrm{i} f t_{0}\right) \sum_{j=1}^{N} \exp (2 \pi \mathrm{i} f j \triangle t) \\
& \quad=\exp \left(2 \pi \mathrm{i} f t_{0}\right) \exp (\pi \mathrm{i} f \triangle t(N+1)) \frac{\sin (\pi f N \triangle t)}{N \sin (\pi f \triangle t)}
\end{aligned}
$$

in which we have made use of

$$
\sum_{j=0}^{N-1} z^{j}=\frac{1-z^{N}}{1-z}
$$

with $z=\exp (2 \pi \mathrm{i} f \triangle t)$.

For $t_{0}=-(N+1) \triangle t / 2: W_{N}(f)=\frac{\sin (\pi N f \triangle t)}{N \sin (\pi f \triangle t)}$: periodic function with period $1 / \triangle t$:

$$
\left|W_{N}\left(f+\frac{n}{\triangle t}\right)\right|=\left|W_{N}(f)\right| .
$$

$F_{N}(f)$ has maxima at $f_{n}=n / \Delta t$

For non-equidistant data: $\triangle t \simeq 1$ day, 1 year, specific gaps, length of nightly strings, etc.

Frequency (d^{-1})
Spectal window (upper right) and DFT (bottom) of a noise-free sinusoid with amplitude 1 at $5.123456789 \mathrm{~d}^{-1}$ for the sampling shown upper left.

The Lomb-Scargle periodogram:

$$
P_{N}(f)=\frac{1}{2}\left\{\frac{\left\{\sum_{i=1}^{N} x\left(t_{i}\right) \cos \left[2 \pi f\left(t_{i}-\tau\right)\right]\right\}^{2}}{\sum_{i=1}^{N} \cos ^{2}\left[2 \pi f\left(t_{i}-\tau\right)\right]}+\frac{\left\{\sum_{i=1}^{N} x\left(t_{i}\right) \sin \left[2 \pi f\left(t_{i}-\tau\right)\right]\right\}^{2}}{\sum_{i=1}^{N} \sin ^{2}\left[2 \pi f\left(t_{i}-\tau\right)\right]}\right\}
$$

with τ chosen such that

$$
\sum_{i=1}^{N} \cos \left[2 \pi f\left(t_{i}-\tau\right)\right] \sin \left[2 \pi f\left(t_{i}-\tau\right)\right]=0
$$

Note: $\lim _{N \rightarrow \infty} P_{N}(f)=A^{2} N / 4$

Lomb-Scargle periodograms for the data.

Geneva V

- Error estimate for derived frequency?

Assuming white noise and no alias problems:

$$
\sigma_{f}=\frac{\sqrt{6} \sigma_{R}}{\pi \sqrt{N} A T}
$$

with σ_{R} average error of data (\sim standard deviation of noise),
T total time span, N number of data points

- Interval of testfrequencies?
use interval [$0, N y q$] with $N y q$ the Nyquist frequency.
For equidistant data: $1 / 2 \triangle T$ with $\triangle T$ the time step.
For unevenly spaced data: take median of all time intervals between two consecutive measurements.
- Acceptance criterion for a frequency: $A>4 \sigma_{\text {Fourier }}$. Compute $\sigma_{\text {Fourier }}$ in oversampled interval of testfrequencies around candidate frequency.
Criterion: 99.9\% confidence interval that peak is not due to noise.

How good is the solution?
LS fitting with f fixed:

$$
x_{i}\left(t_{i}\right)=A \sin \left[2 \pi\left(f t_{i}+\psi\right)\right]+C
$$

Variance reduction $\in[0,1]$:

$$
1-\frac{\sum_{i=1}^{N}\left\{x_{i}-\left[A \sin \left(2 \pi\left(f t_{i}+\psi\right)\right)+C\right]\right\}^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

Search for new frequencies in residuals $R_{i}(f) \equiv x_{i}-x_{i}^{c}(f)$ with:

$$
x_{i}^{c}(f) \equiv A \sin \left[2 \pi\left(f t_{i}+\psi\right)\right]+C
$$

and so on, until amplitude $A<4 \sigma_{\text {Fourier }}$

At some point, you will reach the noise level...

