Plateau de Bure / NOEMA Phasing Plans

Michael Bremer Institut de Radio Astronomie Millimétrique (IRAM)

From Stars to Black Holes: mm-VLBI with ALMA and other Telescopes ESO Garching, June 27th - 28th 2012

- Plateau de Bure Interferometer today: Switching to phased array mode, observing techniques
- Calibration

 Effective system temperature in phased array mode
- VLBI with NOEMA

 Capabilities and timescales

Geographical Overview

IRAM 30-M

Pico Veleta Sierra Nevada, Spain Alt. 2850m

IRAM Plateau de Bure Interferometer

IRAM Plateau de Bure: synthesis antenna

IRAM Plateau de Bure: receiver tuning ranges

	Band 1	Band 2	Band 3	Band 4
RF range*/[GHz]	80-116	129 - 174	201 - 267	277 - 371
$T_{\rm rec}/[{ m K}]~{ m LSB}$	40 - 55	30 – 50	40 - 60	30 – 50
$T_{\rm rec}/[{ m K}]~{ m USB}$	40 - 55	40 - 80	50 - 70	30 – 50
$G_{im}/[dB]$	-10	-1210	-128	-20
RF LSB/[GHz]	80 - 104	129 - 165	201 - 264	277 - 359
RF USB/[GHz]	104-116	164 - 174	264 - 267	289-371

^{*} center of the 4.2-7.8 GHz IF band;

All bands are in dual polarization.

Filter wheels: Currently we have lambda/4 plates installed for band 1 and band 3

Plateau de Bure VLBI equipment today

EFOS-38 maser (T4Science), with low phase noise quartz

Mark4 Formatter + Mark5A recorder

Narrow-band correlator (2000)

Rohde & Schwarz SMA100 B22 frequency generator

You can visit our vintage Mark4B tape recorder in the "Deutsches Museum" in München.

.4 m diameter

Plateau de Bure VLBI equipment today (II)

Two GPS receivers monitor the maser drift.

One Narrow-Band correlator unit

Half of one Adder Module

One Narrow-Band correlator unit

Note: this backend is limited to 128 MHz (1 Gbit/sec, all 8 units) in VLBI mode.

Half of one Adder Module

Phasing the phased array

Phasing = align phases of all antennas and spectral units to the **reference antenna**. On Bure that is done **once** integrating over 2 minutes before a VLBI scan is started.

Phasing on an external point-like continuum calibrator is required if the science target:

- has an extended component resolved by the local interferometer,
- is a maser,
- is too weak.

Many science targets are strong quasars, which allow to phase directly on them.

Note: Phasing is a function of time and target position, and needs to be redone frequently.

Observing in VLBI mode

- macro calls are inserted into the Field System (FS) schedule and sent to the telescope control computer running OBS.
- this macro handles calibration, pointing, focus, phasing and next VLBI scan start, and keeps track of available time
- by modifying macro key variables, the observer can adapt the observing strategy in real time, or even de-activate the macro to type commands by hand.
- if necessary, the reception in OBS can be put on hold without stopping the FS.

Practical Aspects

- Phased array operation: preferentially in compact configuration (less phase noise)
- **Pointing / focus:** use backend WIDEX! (3.6 GHz vs. 128 MHz bandwidth)
- Limitations at millimeter wavelengths: mainly due to meteorological conditions (wind speed, precipitation)
- Flexible calibration strategy: very useful during instable afternoons.
- Reference antenna: compromise between
 - short baselines to all other antennas
 - minimal shadowing by other antennas

Practical Aspects (detail)

Average [m]

45.25

56.94

45.60

63.71

57.92

40.93

Choice of reference antenna: Example in compact 6 antenna D configuration

56

32.11

BL	Length[m]				10	1 /1	г те	.,,	
1 2	73.32	Connected baseline lengths [m] for all possible reference antenna choices							
1 3 2 3	59.80 23.99	A1	0.00	73.32	59.80	32.01	66.38	39.99	
1 4 2 4	32.01 94.48	A2	73.32	0.00	23.99	94.48	88.00	61.81	
3 4 1 5	86.74 66.38	A3	59.80	23.99	0.00	86.74	64.00	39.04	
2 5 3 5	87.00 64.01	A4	32.01	94.48	86.74	0.00	97.02	72.00	
4 5	97.02	A5	66.38	88.00	64.00	97.02	0.00	32.11	
1 6 2 6	39.99 61.81	A6	39.99	61.81	39.04	72.00	32.11	0.00	
3 6 4 6	39.04 72.00								

System Temperature

Required: a system temperature that includes the phase noise.

From the parallel running cross-correlations and autocorrelations we have

- Tsys [Kelvin] for each antenna i
- Efficiency E (in Kelvin/Jansky) for each antenna i
- phases P averaged over the desired time resolution per antenna i, relative to the reference antenna

$$T_{sys} = N_{ant} \cdot \sum_{i=1}^{N_{ant}} E_i \cdot \left(\sum_{i=1}^{N_{ant}} \sqrt{\frac{E_i}{T_{sys i}}} \cdot cosP_i\right)^{-2}$$

• if the source is too weak, extended or a line source: use the latest available point-source phasing efficiency instead.

NOEMA

Northern Extended Millimeter Array:

Planned extension of the present-day Plateau de Bure Interferometer

	PdBI	NOEMA
antennas	6	10 (12 ?)
baselines	15	45 (66 ?)
bandwidth	2 x 3.6 GHz	2 x 16 GHz
max. baseline	760 m	1600 m

In 2015 (?): The 5th generation correlator on Bure

In 2015 (?): The 5th generation correlator on Bure

In 2015 (?): The 5th generation correlator on Bure

- Correlator with FPGA technology, fully re-programmable
- can morph into a large-band phased array machine for up to 12 antennas with 2 x 2 GHz bandwidth (16 Gbits/sec data rate)
- autocorrelations in 32 MHz sections for calibration
- integrated cross-correlator for phasing
- fully digital output