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Abstract A binary in which a slightly evolved star starts mass transfer to a neutron star can

evolve towards ultra-short orbital periods under the influence of magnetic braking. This is

called magnetic capture. We investigate in detail for which initial orbital periods and initial

donor masses binaries evolve to periods less than 30–40 minutes within the Hubble time.

We show that only small ranges of initial periods and masses lead to ultra-short periods,

and that for those only a small time interval is spent at ultra-short periods. Consequently,

only a very small fraction of any population of X-ray binaries is expected to be observed at

ultra-short period at any time. If 2 to 6 of the 13 bright X-ray sources in globular clusters

have an ultra-short period, as suggested by recent observations, their formation cannot be

explained by the magnetic capture model.
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2.1 Introduction

The globular clusters belonging to our Galaxy house thirteen bright (LX ∼> 1035 erg s−1 in

the 0.5–2.5 keV range) X-ray sources, neutron stars accreting from a low-mass companion.

A surprisingly large fraction of these has ultra-short orbital periods of less than about 40

minutes, as first noticed by Deutsch et al. (1996). Two of the five orbital periods known are

11.4min and 20.6min (or its alias 13.2min) for the sources in NGC6624 and NGC6712,

respectively (Stella et al. 1987; Homer et al. 1996). The orbital periods of eight systems

are not known, but for four of them indirect evidence points to an ultra-short period. This

evidence consists of the absolute magnitude of the optical counterpart (Van Paradijs & Mc-

Clintock 1994), of the energy distribution of the X-ray spectrum (Sidoli et al. 2001), and of

the maximum flux reached during X-ray bursts (Kuulkers et al. 2003). Collating this evid-

ence, Verbunt & Lewin (2004, their Table 1) suggest that two more sources probably, and

two others possibly have ultra-short orbital periods (in NGC 1851 and NGC6652, and in

NGC7078 and Terzan 5, respectively). The 43.6min period found by Deutsch et al. (1996)

is not the period of the bright X-ray source in NGC6652, but of a fainter source (Heinke

et al. 2001).

Thus both among the known periods and among the suggested periods, about half of

the bright X-ray sources have ultra-short orbital periods. This is in marked contrast to the

period distribution of bright X-ray sources in the galactic disk, where only one period much

shorter than 40 minutes has been suggested so far (Wang & Chakrabarty 2004).

Ultra-short-period binaries with a neutron star can be formed in a number of ways. An

expanding giant star can engulf the neutron star, which then spirals in to form a binary with

the helium-burning core. If mass transfer starts immediately after spiral-in, the donor is a

helium-burning star (Savonije et al. 1986), if mass transfer starts only after a long time, the

donor has evolved into a CO white dwarf or a CO white dwarf with helium mantle (Yungel-

son et al. 2002). The process requires a giant of higher mass than exists in globular clusters

today; but the waiting time between end of the spiral-in and onset of the mass transfer al-

lows us to observe the mass transfer stage today of systems formed long ago. Indeed, it

has been argued that this in fact is the dominant formation process for ultra-short-period

binaries in globular clusters (Davies & Hansen 1998; Rasio et al. 2000). Alternatively, it

has been suggested that in a cluster, a neutron star can also in a collision with a giant expell

its envelope and form a binary with its core (Verbunt 1987). It is not obvious that this leads

to a binary sufficiently close to start mass transfer within the Hubble time (Rasio & Shapiro

1991). A white dwarf donor implies an expanding orbit, and thus predicts an increasing

orbital period.

Yet another scenario starts from a binary of a neutron star and a main-sequence star. The

evolution of this binary depends critically on the initial orbital period. When the period is

short, mass transfer is driven by loss of angular momentum, and the orbital period decreases

with the donor mass until a minimum period is reached near 70min (Paczynski & Sien-

kiewicz 1981). We will call this a converging system. At the minimum period, the donor

becomes degenerate, and further mass transfer expands the orbit. When the orbital period is
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long, mass transfer is driven by expansion of the donor star, and the orbit expands with the

donor radius until the donor has transferred its full envelope (Webbink et al. 1983). These

are diverging systems. However, for a narrow range of periods loss of angular momentum

can still shrink the orbit for a slightly evolved donor. Due to its higher helium content, the

donor becomes degenerate at smaller radius, and correspondingly shorter orbital period (Tu-

tukov et al. 1985). Orbital periods shorter than 11min can be reached (Podsiadlowski et al.

2002). These systems therefore converge, but the process may take more than a Hubble

time. At 11.4min, the period derivative may be negative or positive, depending on whether

the system is still on its way to the period minimum, or has already rebounded. We will

refer to this scenario as magnetic capture.

The repeated observation that the 11.4min period of the bright X-ray source in the glob-

ular cluster NGC6624 is decreasing (Van der Klis et al. 1993b; Chou & Grindlay 2001)

would appear to indicate that the system evolved according to the magnetic capture scen-

ario. However, it is not impossible that the negative period derivative is only apparent, the

consequence of an acceleration of the binary in our direction, in the gravitational potential

of the innermost part of the globular cluster. A more accurate position of the (optical coun-

terpart to the) X-ray binary and a re-determination of the centre of the cluster shows that

the X-ray source is much closer to the cluster centre than was thought before, and thus in-

creases the probability that the measured period is affected by acceleration. Nonetheless, the

measurement of a period decrease is a strong incentive to investigate the magnetic capture

scenario in more detail.

A possible problem with the magnetic capture scenario is suggested by computations

for binaries in the galactic disk, by Pylyser & Savonije (1988). None of their calculated

evolutions lead to periods of about 11 minutes within the Hubble time. Podsiadlowski et al.

(2002) do not address this problem explicitly, but only show the time elapsed since the onset

of mass transfer.

In this chapter, we address the question under which circumstances the very short orbital

periods observed in NGC6624 and NGC 6712 are reached within the Hubble time, in the

magnetic capture scenario described above. The parameters that we vary are the initial

mass of the donor star, the initial orbital period (or more or less equivalently, the orbital

period at which mass transfer starts), and the metallicity of the donor. In Sect. 2.2 we briefly

describe the code that we use, and the algorithms specific to the evolutionary scenario that

we study. In Sect. 2.3 we give the results for two specific cases, to compare with earlier

work and to illustrate the possible evolution paths. We then describe the expected outcomes

for an initial distribution of donor masses and initial orbital periods in Sect. 2.4. We find

that orbital periods of 11.4 and 20.6min are possible, but very unlikely in this scenario. The

consequences of this conclusion are discussed in Sect. 2.5.
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2.2 Binary evolution code

2.2.1 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally de-

veloped by Eggleton (1971, 1972) and with updated input physics as described in Pols et al.

(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with

low-temperature opacities from Alexander & Ferguson (1994).

The equations for stellar structure and composition are solved implicitly and simultan-

eously, along with an adaptive mesh-spacing equation. Convective mixing is modelled by

a diffusion equation for each of the composition variables, and we assume a mixing length

ratio l/Hp = 2.0. Convective overshooting is taken into account as in Schröder et al.
(1997), with a free parameter δov = 0.12 calibrated against accurate stellar data from non-
interacting binaries (Schröder et al. 1997; Pols et al. 1997). The helium core mass is defined

as the mass coordinate where the hydrogen abundance becomes less than 10%.

We use a version of the code (see Eggleton & Kiseleva-Eggleton (2002), hereafter

EK02) that allows for non-conservative binary evolution, even though the evolution of only

one component star is calculated in detail. The companion, in our case a neutron star, is

treated as a point mass. With the adaptive mesh, mass loss by stellar winds or by Roche-

lobe overflow (RLOF) in a binary is simply accounted for in the boundary condition for the

mass. Spin-orbit interaction by tides is treated according to the equilibrium tide theory (Hut

1981) with a tidal friction timescale as given by EK02. This is taken into account by solving

additional equations for the moment of inertia I(r), the uniform stellar rotation frequency
Ωrot, the orbital angular momentum Jorb and the orbital eccentricity e. These equations
(of which the latter three are independent of the interior structure and only depend on time)

are also solved implicitly and simultaneously with the usual set of equations, at little extra

computational cost. The rotation induces a centrifugal potential that influences the stellar

structure through a reduction of the effective gravity. The centrifugal potential for each

mesh point is averaged over a spherical shell. Rotationally induced mixing is not taken into

account in this code.

Unlike EK02, we do not include their model for dynamo-driven mass loss and mag-

netic braking. Rather we apply a magnetic braking law without accompanying mass loss,

as discussed in Sect. 2.2.2. This facilitates direct comparison to previous binary evolution

calculations in which similar assumptions have been made. Although we follow tidal in-

teraction in detail, the effect on the current calculation is limited because the short orbital

periods we consider ensure that the orbit is always circularised and synchronised with the

stellar spin. However, exchange of angular momentum between spin and orbit is taken into

account.

The initial hydrogen and helium abundances of our model stars are a function of the

metallicity Z: X = 0.76 − 3.0Z and Y = 0.24 + 2.0Z . In this research we use the metal-
licities Z = 0.0001 (with X = 0.7597, Y = 0.2402), Z = 0.002 (with X = 0.754, Y =
0.244), Z = 0.01 (withX = 0.73, Y = 0.26) and Z = 0.02 (withX = 0.70, Y = 0.28).
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2.2.2 Angular momentum losses

If the lower mass star in a binary fills its Roche lobe and starts to transfer mass to a more

massive companion, the orbit will widen, unless there are enough angular momentum losses

to compensate for this effect. We assume three sources of angular momentum loss from the

system.

The most important source is magnetic braking. Due to magnetic braking, spin angular

momentum is lost from the secondary and eventually, due to the tidal spin-orbit coupling,

from the orbit. We use the formula given by Rappaport et al. (1983):

dJMB

dt
= −3.8 × 10−30 M2 R4 ω3 dyn cm. (2.1)

Like Podsiadlowski et al. (2002), we apply full magnetic braking when the mass of the con-

vective envelope of the donor exceeds 2% of the total mass of the star, and if qconv < 0.02
reduce the strength of the magnetic braking in Eq. 2.1 by a factor of exp(1 − 0.02/qconv),
where qconv is the mass fraction of the convective envelope of the star. The fact that the

magnetic braking removes angular momentum from the spin of the star rather than directly

from the orbit is different from Podsiadlowski et al. (2002). The main difference is that our

study takes into account stellar spin at all, which influences the radius of the star and thus

the moment at which Roche-lobe overflow commences.

For short orbital periods, gravitational radiation is a strong source of angular momentum

loss. We use the standard description

dJGR

dt
= −

32

5

G7/2

c5

M2
1 M2

2 (M1 + M2)
1/2

a7/2
(2.2)

(Peters 1984).

The third way of angular momentum loss from the system is by non-conservative mass

transfer. We assume that only a fraction β of the transferred mass is accreted by the neutron
star. The remainder is lost from the system, carrying away a fraction α of the specific
angular momentum of the neutron star

dJML

dt
= −α (1 − β) a2

1 ω Ṁ2, (2.3)

where a1 is the orbital radius of the neutron star and ω is the orbital frequency.
To keep the models simple, we applied no regular stellar wind to our models, so that

all mass loss from the system and angular momentum loss due to this result from the non-

conservative mass transfer described above.

2.3 Binary models

2.3.1 Calculated grid

Using the binary evolution code described in Sect. 2.2, we calculated an initial grid of mod-

els for Z = 0.01, the metallicity of NGC 6624, and Y=0.26. We choose initial masses
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between 0.7 and 1.5M⊙ with steps of 0.1M⊙, and initial periods between 0.50 and 2.75

days, with steps of 0.25 days. Around the bifurcation period between converging and di-

verging systems, where the shortest orbital periods occur, we narrow the steps in P to 0.05

days.

We specify the bifurcation period more precisely as the longest initial period that leads

to an ultra-short period, within a Hubble time. With this definition, the bifurcation period

corresponds to the initial period of the binary that reaches its minimum period exactly after

a Hubble time. This extra constraint is needed because there is no sharp transition between

converging and diverging systems, especially since every diverging system will eventually

converge due to gravitational radiation, if given the time. For instance, the system with an

initial secondary mass of 1.1M⊙ and an initial period of 0.90 days — that is shown to run

out of the right of Fig. 2.2 at logP ≈ −0.4— does converge to a period of slightly more
than 5 minutes, but only after almost 32 Gyr. This system is therefore considered to be

diverging. Since the last part of the converging tracks in Figs. 2.1 and 2.2 is very steep, a

system that reaches an ultra-short minimum period shortly after a Hubble time will usually

have an orbital period at the Hubble time that is on the order of hours.

The total number of calculations for Z = 0.01 is 150; 90 for the initial grid, and 60
for the finer grid. We follow Podsiadlowski et al. (2002) in choosing α = 1 and β = 0.5
in Eq. 2.3. The orbital evolution of the systems with initial masses of 1.0 and 1.1M⊙ is

displayed in Figs. 2.1 and 2.2.

2.3.2 Interpretation of the models

Fig. 2.1 shows that the models with the shortest initial periods converge to minimum periods

of about 70minutes. After this, the stars become degenerate, and the orbits expand. Before

the minimum period is reached, the stars become fully convective, thus mixing all of the

star to a homogeneous composition. These stars have not yet formed a helium core, but are

still a mixture of hydrogen and helium when they become degenerate. The stars with larger

initial periods have a lower hydrogen abundance when they reach their minimum period.

For the longest initial periods, the Roche lobe is filled in a later evolution stage and

the evolutionary time scale is shorter, so that the star expands faster and the mass transfer

rate is higher. Because of this, and the fact that the mass ratio is less than 1, the angular

momentum loss is not strong enough to shrink the orbit, so that it starts to expand shortly

after mass transfer starts. These stars are sub-giants, and have a compact helium core inside

their hydrogen envelopes. After they have transferred all of this envelope, they shrink and

become heliumwhite dwarfs. The systems with larger initial periods are more evolved when

they fill their Roche lobes and produce more massive white dwarfs.

In between the smallest and largest initial periods, there are a number of models that

reach orbital periods that are much shorter than 70min. This happens due to magnetic cap-

ture: the orbital period is reduced strongly under the influence of strong magnetic braking.

When magnetic braking disappears, the orbit is close enough to shrink to ultra-short peri-

ods by angular momentum loss due to gravitational radiation. The magnetic captures come
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Figure 2.1: Evolution of the orbital periods of selected systems with Z = 0.01, an initial
secondary mass of 1.0M⊙ and initial periods of 0.50, 0.75, 1.00, 1.25, 1.30, 1.35, 1.40,

1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 2.0, 2.25, 2.5 and 2.75 days. The symbols mark

special points in the evolution: + marks the start of Roche-lobe overflow (RLOF), × the
minimum period, △ the end of RLOF and © marks the end of the calculation. The four

dotted horizontal lines show the orbital periods of the closest observed LMXBs in globular

clusters: 11.4 and 20.6, and in the galactic disk: 41 and 50 minutes.

from models with a very narrow initial period range. The four models with Mi = 1.0M⊙

that reach a period less than 40minutes, for instance, have initial periods of 1.45 1.50, 1.55

and 1.60 days, where the last model reaches the ultra-short period regime only after 14Gyr.

By interpolation, as described later in Sect. 2.4.1, we find that the models that reach a min-

imum period below 40min and within 13.6Gyr, have initial periods in the range 34.5 –

38.1 hours. These stars fill their Roche lobes when their orbital periods are in the range of

14.3 – 17.2 hours. The lowest orbital period reached, by the system with the initial period

of 38.1 hours, is 12.0min, after 13.6Gyr.

If one draws a vertical line in Fig. 2.1 at 11.5Gyr (about the age of the globular clusters),

one can imagine that there is a distribution of observable X-ray binaries at that moment in

time. The lowest orbital period found at that time is about 10−1.75 days, or 25minutes. All

models with orbital periods higher than about 1 day have stopped mass transfer and will not

be visible as X-ray binaries. Because the lines in Fig. 2.1 are steeper at lower periods, it is

clear that the higher periods, around one day, will dominate.
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Figure 2.2: Evolution of the orbital periods of selected systems with Z = 0.01, an initial
secondary mass of 1.1M⊙ and initial periods of 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,

0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 2.0, 2.25, 2.5 and 2.75 days.

See Fig. 2.1 for more details.

Figure 2.2 shows the same data as Fig. 2.1, but for models with an initial secondary mass

of 1.1M⊙. The results are qualitatively similar, but the ultra-short period regime is reached

from lower initial periods, and after a shorter period of time. We find that the models that

reach periods lower than 40min before 13.6Gyr have initial periods of 18.0 – 20.9 hr and

fill their Roche lobes in the period range 15.1 – 18.2 hr. The system with the initial period of

18.0 hr reaches 40min after 8.3Gyr, the system with a 20.9 hr initial period has the smallest

minimum period: 8.0min.

If we again imagine the period distribution at 11.5Gyr, but now for Fig. 2.2, we see

that the period range that we expect for mass transferring binaries is shifted downwards in

period. Orbital periods as short as 10.6min can now occur, and systems with periods over

9.5 hr do not transfer mass anymore at that moment. With respect to the tracks in Fig. 2.1,

we see that their density is much lower here. This is partially due to the fact that we use

linear equally spaced periods at a lower initial period, so that they are more widely spaced

in log P .

Figure 2.3 illustrates the evolution of the convective envelope of a 1.1M⊙ star for the

grid models with initial periods between 0.5 and 0.9 d. Looking at the models in the order

of increasing initial period we find that in the first five the stars become fully convective
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Figure 2.3: Mass fraction of the convective envelope (qconv) as a function of the total mass of

the donor, for the models with the shortest 9 initial orbital periods in Fig. 2.2. The numbers

in the plot give the initial periods in days for that line. As evolution proceeds towards lower

donor masses, the mass faction of the convective envelope increases. For the 5 models

with initial periods between 0.5 and 0.7 d, the total mass at which the star becomes fully

convective is anti-correlated with the initial period. At initial periods of 0.75 d and longer,

the initial increase of the mass fraction of the convective envelope is followed by a decrease.

at decreasing total masses. The first model that evolves towards ultra-short periods, with

an initial period of 0.75 d is also the first model in which the donor never becomes fully

convective: an initial increase of the mass fraction of the convective envelope is followed

by a decrease. For initial periods of 0.85 d and 0.9 d the convective envelope disappears

completely. The general trend with increasing initial period that is visible in Fig. 2.3, is

the consequence of an increasing helium abundance in the core. The cores with a higher

helium abundance tend to be hotter and thus more stable against convection. The absence

of convection in the core in turn keeps the helium abundance high. The third model, with an

initial period of 0.6 d shows a track that is slightly different from those of the neighbouring

models. This model becomes almost fully convective, but the central 10−4 M⊙ does not,

and as a consequence the mixing from the core to the surface is suppressed. We have

repeated this calculation with a slightly different convective mixing efficiency and find the

same results.
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Table 2.1 lists some properties of the same nine models shown in Fig. 2.3 at their period

minimum. The first five models all have minimum periods more than 1 h and more than 1%

hydrogen in the core at their minimum, whereas the cores of the last four models consist

for more than 99% of helium. With decreasing minimum period, the mass transfer rates

increase rapidly and the luminosities of the donors decrease. In Table 2.2 we list some

observational properties along the evolutionary tracks of two of our grid models with Z =
0.01 andMi = 1.1 M⊙.

Although we find that it is possible to reach orbital periods below 40minutes without

spiral-in, but due to magnetic capture instead, it seems that one has to select an initial period

carefully in order to actually do so. We also find that it is possible to construct a model

that has a minimum period as low as the observed 11.4min in a time span smaller than

the Hubble time. The question arises, however, what the chances are that such a system

is indeed formed in a population of stars. In order to quantify this, we will expand our

parameter space to the entire grid we calculated and do statistics on these tracks in Sect. 2.4.

2.3.3 Bifurcation models

For an initial secondary mass of 1.1M⊙, the grid models with initial periods of 0.85 days

and 0.90 days bracket the bifurcation period. Some timescales that can explain this differ-

ence are shown in Fig. 2.4. The evolution of both models is rather similar in the beginning,

except for the small difference in orbital period, that stays about constant during the main

sequence. The wider system has a larger Roche lobe and thus the donor fills its Roche lobe

at a slightly later stage of its evolution. At this point, the evolutionary timescale of the donor

is shorter than that in the closer system, and it can form a well defined helium core. When

the envelope outside this core has been reduced by mass transfer to ≃ 0.03 M⊙, it collapses

onto the core, mass transfer stops, and magnetic braking disappears before the magnetic

capture is complete. Gravitational radiation is then the only term of angular momentum

loss and it is not strong enough to shrink the orbit to the ultra-short period regime within the

Hubble time.

In the closer system, the evolutionary timescale of the donor is slightly larger and its

helium core mass is slightly smaller. At approximately 9Gyr mass transfer has stripped the

donor to such extend that hotter layers emerge at the surface, the convective envelope of the

star becomes very thin and magnetic braking is strongly reduced (see the discussion with

Fig. 2.3). Fig. 2.4 shows that this happens at the moment where the gravitational radiation

timescale becomes shorter than the evolutionary timescale of the donor, so that angular

momentum loss remains sufficient to shrink the orbit from the hour to the minute regime.
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Figure 2.4: Timescales of the models that bracket the bifurcation period for 1.1M⊙. Up-

per panel (a): model with Pi = 0.85 d. Lower panel (b): model with Pi = 0.90 d.
The line styles represent the different timescales: Solid line: nuclear evolution times-

cale (M/M⊙)/(L/L⊙) × 1010 yr, dashes: magnetic braking timescale Jorb/J̇MB, dash-

dot: gravitational radiation timescale Jorb/J̇GR, dash-dot-dot-dot: mass transfer timescale

M/Ṁtr. See the text for a discussion.

2.4 Statistics

2.4.1 Interpolation between models

In order to do statistics on our models, we have to interpolate between the calculated models

to get a time-period track, that gives the orbital period of a system as a function of time, for

a given initial orbital period Pi.

Before we can interpolate between two calculated tracks, we must first divide the tracks

into similar parts of evolution. We choose three parts: i) the part between ZAMS and the

beginning of RLOF, ii) the part between the beginning of RLOF and the moment where

the minimum period (Pmin) was reached, and iii) the part between Pmin and the end of the

calculation. Each of these parts is redistributed into a fixed number of data points, equally

spaced in the path length of that part and determined by a polynomial interpolation of the
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third degree. The path length is the integrated track in the t–log P plane, and defined as

ℓ =
∑

i

√

(

t(i) − t(i − 1)

∆t

)2

+

(

log P (i) − log P (i − 1)

∆ log P

)2

, (2.4)

where∆t = tmax − tmin and∆log P = log Pmax − log Pmin. Thus, each part of all tracks

contains the same number of points, and each point on these parts marks about the same

moment in evolution in two different tracks.

Next, we interpolate between two tracks, to calculate the track for the given initial

period. Because the tracks differ considerably between the shortest and longest initial

period, we use linear interpolation between two adjacent tracks, that are always rather sim-

ilar. Each track is thus interpolated point-by-point between each pair of corresponding

points from the two adjacent tracks, to get the time and the orbital period.

Once the interpolated track is known, we interpolate within the track, to obtain the

orbital period at a given moment in time. For this, we use a polynomial interpolation of the

fourth degree. For some models the second part of a track consists of one point, because the

beginning of RLOF marks the minimum period. For interpolations involving this point, we

use a third degree polynomial interpolation.

A handful of models crash after they have stopped mass transfer, for instance the models

with the highest initial period in Figs. 2.1 and 2.2. These systems will not give observable

X-ray sources, but some of these tracks may be needed for the interpolation. We continued

the orbital evolution of the most important of these models analytically, under the influence

of gravitational radiation only, until the orbit becomes so small that the star’s Roche lobe

touches its surface. We consider the orbital period at which mass transfer recommences

as the minimum period. We assume a constant radius of the star since the last converged

model, which probably means that we overestimate the minimum period a bit in these cases.

2.4.2 Results for Z=0.01

In Sect. 2.3, we have found that we can create LMXBs with periods down to 11 minutes or

perhaps even less, within a Hubble time. We also saw, however, that one has to select the

initial period carefully to create a model that reaches such a low period, and that the system

spends very little time on this minimum period. In order to investigate how probable it is to

observe ultra-compact binaries, we select random points on random tracks like the ones in

Figs. 2.1 and 2.2 and convert the result into a histogram. We perform this operation in the

following way.

For a fixed initial secondary mass, we draw a random initial period, between 0.50 and

2.75 days, from a flat distribution in log P . We then interpolate the time-period track that
corresponds to this initial period, using the method described in Sect. 2.4.1. For each point

on this track, an estimate for the mass transfer rate is obtained by interpolating in the logar-

ithm of the calculated mass transfer rates. For points without mass transfer, we adapt a value

of Ṁtr = 10−35 M⊙ yr−1, so that we can take its logarithm. This introduces some irreg-

ularities, like the peaks around log P (d) = −0.5 in Fig. 2.5, where interpolation between
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models with and without mass transfer, and interpolation between converging and diverging

models play a role. This is usually only the case at orbital periods of several hours or more,

and hence it is of no consequence for the ultra-compact binaries.

Once the time-period track is calculated, we draw a random moment in time, from a

linear distribution between 10 and 13 Gyr, the approximate ages of globular clusters, and

interpolate within the track to obtain the orbital period at that random moment. We accept

only systems that have not evolved beyond their minimum period, firstly because of the

negative period derivative measured for the 11.4min system in NGC6624, and secondly

because the evolution code we use can generally not calculate far beyond the period min-

imum. We also estimate the mass transfer rate at that moment, again by interpolating in

log Ṁtr. We reject all systems with a mass transfer rate Ṁtr < 10−20 M⊙ yr−1, because

it is unlikely that they have any mass transfer at that moment and will therefore not be an

X-ray source.

If we repeat this procedure many times, we can create a histogram that displays the

expected distribution of orbital periods of a population of converging LMXBs (with all the

same initial secondary masses) after 10 - 13Gyr. The results for 1.1 M⊙ and Z = 0.01 are
shown in Fig. 2.5.

To simulate a population consisting of stars of different masses, one should interpolate

between the tracks as we did for the period. The tracks are too different from each other to

ensure correct results. It would require a large number of extra models to be able to inter-

polate between the masses correctly. Instead, we choose to add the period distributions of

the different masses to simulate such a population. We do this for two different assumptions

for the mass distribution: the Salpeter birth function, and a flat distribution. The results are

shown in Fig. 2.6.

We see that there is little difference between the two weighing methods. This assures

that although we do not know the initial distribution of the mass, it is of little influence on

this result. Especially the short-period tails of the distributions are almost equal. In a sample

of 107 systems we find one converging system with a period of about 11 minutes and 15

systems with a period of 20 minutes.

2.4.3 Results for other metallicities

The whole exercise we described in section Sect. 2.3.1, 2.4.1 and 2.4.2 is also applied to

models for Z = 0.0001, Z = 0.002, and Z = 0.02, in order to see the effect of metallicity
on the expected distributions. For Z = 0.02 we calculate the same initial grid as we did for
Z = 0.01, between Pi = 0.5−2.75 days forMi = 0.7−1.3M⊙, butPi = 0.55−3.025days
for Mi = 1.4 and 1.5M⊙, since these stars even at the ZAMS do not fit in an orbit with

P = 0.5 days. For Z = 0.002 we use the same initial mass range, but it turns out that
for Mi = 1.0 − 1.5M⊙ the bifurcation period lies very close to or lower than 0.5 days

(see Fig. 2.7). We therefore shift the minimum initial period to 0.35 days forMi = 1.0, 1.4
and 1.5M⊙, and to 0.4 days for Mi = 1.1 − 1.3M⊙. For Z = 0.0001, the minimum
initial period is shifted to 0.3 d for 0.7 − 1.2 M⊙ and even to 0.28 d for 1.3 − 1.5 M⊙. For
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Figure 2.5: Statistics results for the 1.1M⊙ models. Left panel (a): Results from the draw

of one million random initial periods and times. Each dot represents the orbital period of

the selected system at the selected time. Only models that were converging and transferring

mass at that time were accepted, about 10.5% of the total number. The peaks at the higher

orbital periods are artefacts, caused by interpolation between models with and without mass

transfer. Dots below P = 30 min are plotted larger for clarity. Right panel (b): A histogram
displaying the fraction of systems found at a certain orbital period, at any time between 10

and 13 Gyr. The log P -axis was chosen to be vertical, to correspond to the vertical axis
in the left panel. The thick line displays the data corresponding to the horizontal axis,

the thin line is the short-period tail of the same data, multiplied by a factor of 100 in the

horizontal (probability) direction. The dotted horizontal lines are the orbital periods of the

four observed LMXBs mentioned in Fig 2.1.
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Figure 2.6: Probability distribution for all models with Z = 0.01. The solid line repres-
ents the sum of the distributions of the different masses weighed with the Salpeter birth

function, the dash-dotted line assumes a flat distribution in mass. The thin lines below

log P (d) = −1.3 and below log P (d) = −1.7 are the same data, multiplied with 100
and 1000 respectively. The four vertical, dotted lines show the orbital periods of the four

observed LMXBs mentioned in Fig 2.1.

Z = 0.0001 andMi = 1.5 M⊙, the initial period at which a ZAMS star fills its Roche lobe

is higher than the bifurcation period. Stars with higher Z have larger radii and often do not
fit in these tight orbits. We shift the upper limit for the period range from which we took

random values accordingly, so that the size of the range (in log P ) did not change. Since
the bifurcation period for the lower metallicity models lies lower, we also have to pinpoint

better to calculate the interesting models around it. We therefore narrow the grid to steps

of 0.01 d around the bifurcation period for Z = 0.002 and Z = 0.0001, and even down to
0.001 d for the last metallicity.

The bifurcation periods for the different masses are plotted in Fig. 2.7a. There is a trend

in metallicity in the sense that the dotted line of Z = 0.02 could be moved down and left to
fall over that of Z = 0.01 and further to reach that of Z = 0.002 and Z = 0.0001. Fig. 2.7b
shows the minimum periods for the systems that have the bifurcation period for that mass

as their initial period. The trend that is shown can be explained the fact that low mass stars

with a lower metallicity reach the TAMS before the Hubble time and are therefore eligible

for magnetic capture, whereas low mass stars of higher Z do not.
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Figure 2.7: Bifurcation periods and minimum periods as a function of the initial mass for

the four metallicities. Upper panel (a): The bifurcation period (in hours) between systems

that converge and systems that do not converge within a Hubble time. Lower panel (b):

The minimum period (in minutes) that can be reached within a Hubble time as a function

of the initial secondary mass. The different line styles display the different metallicities,

as indicated in the upper panel. The data point for Z = 0.0001,Mi = 1.5 M⊙ is missing

in both panels, because the bifurcation period for these systems is lower than the period at

which such a donor fills its Roche lobe at ZAMS.

The results of the statistics for Z = 0.0001, Z = 0.002 and Z = 0.02 are plotted
in Figs. 2.8, 2.9 and 2.10 in the same way as the results for Z = 0.01 in Fig. 2.6, so that
they can easily be compared. All four distributions are also plotted in a cumulative plot in

Fig. 2.11, showing the fraction of systems with an orbital period below some value, so that

they can be compared directly.

The most remarkable feature in the three distributions with the higher metallicities is

the sharp drop of the number of predicted systems below log P (d) = −1.25, or about
80minutes. This is due to the systems with low initial mass (0.7− 0.9M⊙), that reach their

minimum periods there because they evolve too slow to reach ultra-short periods before the

Hubble time, and remain relatively long at this period. Models with Z = 0.0001 evolve
more quickly, and although most models do not reach ultra-short periods, they are substan-

tially lower than 80min and can even reach 31min in the case ofMi = 0.9 M⊙. The drop

is therefore less sharp for the lowest metallicity we used.
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Figure 2.8: Probability distribution of the orbital periods for all models with Z = 0.0001.
The characteristics of this plot are the same as in Fig. 2.6.

The lower mass stars dominate in roughly the log P -range−1.25 –−0.6, as can be seen
from the fact that here the solid line for a Salpeter weighted addition of the masses that

favours low mass stars is higher than the dash-dotted line for a flat mass distribution. For

the ultra-short periods, there is very little difference between the two weighing methods,

and we can again conclude that the exact initial mass distribution is not important for our

results.

We also see that the lowest possible orbital period for an X-ray binary with Z = 0.0001
within the Hubble time is about a factor two smaller than for the other metallicities. This

is partly due to the fact that ultra-compact binaries are less likely to be formed for this low

metallicity because the initial period must be chosen more precisely. However, we find no

minimum periods less than 16.0min for this metallicity. This has probably to do with the

fact that these stars are hotter and thus have a weaker magnetic field.

In a sample of 107 binaries with Z = 0.0001, we expect no converging systems with
mass transfer and an orbital period of 11.4min, and around 5 with a 20.6min period

(Fig. 2.8). For Z = 0.002 and Z = 0.02, these numbers are 7 systems with an 11.4min
period and 60 with a 20.6min period and 4 systems with an 11.4min period and 10 with a

20.6min period respectively.

Fig. 2.11 shows clearly that there is some difference between the period distributions for

the differentmetallicities, the largest difference being the higher period cut-off for the lowest
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Figure 2.9: Probability distribution of the orbital periods for all models with Z = 0.002.
The characteristics of this plot are the same as in Fig. 2.6.

orbital periods for Z = 0.0001. The largest differences for the three higher metallicities
are found around 11min, (a bit more than an order of magnitude between Z = 0.01 and
the other two metallicities) and around 20min (less than an order of magnitude between

Z = 0.002 and the others). Note that the line for Z = 0.01 predicts for each system with
an orbital period of 11min about 100 systems with Porb ∼< 20 min.

2.5 Discussion

2.5.1 The importance of converging evolution for the formation of

ultra-compact binaries

To understand why the fraction of ultra-compact binaries with decreasing orbital period in

our computations is so small, we note that there are three main factors contributing to this.

First, only a limited range of initial orbital periods leads to strongly converging orbital evol-

ution within the Hubble time, as listed in Table 2.3. This range of periods varies strongly

with donor mass: for Z = 0.01 and for 1.0 and 1.1M⊙ the width is about 0.1 d; but for

1.2 and 1.3M⊙ it is only 0.003 d. This corresponds to ∼5% and ∼0.2%, respectively, of

the range that we consider. The reason for this rapid decrease is that the nuclear evolu-
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Figure 2.10: Probability distribution of the orbital periods for all models with Z = 0.02.
The characteristics of this plot are the same as in Fig. 2.6.

tion time scale of the star increases much more rapidly with mass than the time scale of

magnetic braking. Thus, at higher stellar mass magnetic capture can only occur for smaller

initial orbital periods. Second, for each initial orbital period within the range of converging

systems, only a very short time is spent at ultra-short periods while converging. Thus, the

1.1M⊙ system with initial period of 0.85 d reaches the 20min period after 11.163Gyr and

the 11min period after 11.167Gyr. If we allow a range of ages of 3Gyr, then only 0.1%

of these systems will have an orbital period less than 20min and a negative period deriv-

ative. If we allow also positive period derivatives, the fraction of ultra-compact binaries is

somewhat higher: as can be seen in Fig. 2.2 the evolution towards longer period is compar-

ably rapid as the evolution towards shorter period close to the minimum period. Third, as

already mentioned, the range of initial periods leading to converging systems is very small

for donors with M ≥ 1.2M⊙; hence only donors in a narrow range of initial masses con-

tribute to ultra-short period systems. The combination of these three factors explains why so

few ultra-short period systems are produced, as already surmised by Tutukov et al. (1987).

In our computations above we have assumed an initial period distribution in the range

0.5 d ∼< Pb ∼< 3 d. In the galactic disk, the actual period range extends to much longer
periods, and accordingly our estimates of the fraction of X-ray binaries that is observed

at ultra-short periods are upper bounds, for systems evolved along the scenario that we

compute. This is in agreement with the absence of large numbers of X-ray binaries with
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Figure 2.11: Cumulative plot for the distribution of the orbital periods for all models and all

four metallicities. The different line styles represent the different metallicities as indicated

in the lower right of the plot. The height of the lines shows the logarithm of the fraction

of all probed systems that have an orbital period equal to or lower than the period on the

horizontal axis. For all lines, a flat initial mass distribution is used. The dotted vertical lines

show the observed orbital periods mentioned in Fig 2.1.

periods much less than 40minutes, in the galactic disk. If fact only one such system has

recently been discovered; it may well have formed through a different mechanism, e.g. via

a double spiral-in at the end of which a white dwarf becomes the donor of a neutron star

(Savonije et al. 1986).

In globular clusters the binary period distribution is expected to be different from that

in the galactic disk: the widest primordial binaries are dissolved and close binaries are pro-

duced in close stellar encounters. If the neutron star is exchanged into a primordial binary in

a neutron-star/binary encounter, the period after the encounter scales with the pre-encounter

binary period; in general the orbit after exchange will be similar in size (Sigurdsson & Phin-

ney 1993). However, the range of periods is still expected to be wider than the range that

we have considered in our computations, which therefore give an upper bound to the frac-

tion of ultra-compact binaries. If the neutron star is captured tidally, the orbital period after

capture tends to be short. The exact description of tidal capture is highly uncertain, and we

will discuss the simplest description to provide a reference frame. In this description, the

neutron star captures a main-sequence star if its closest approach d is within three times the
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Mi Pi,1 Pi,2 Prlof,1 Prlof,2 Rzams Rtams Pzams Ptams

1.0 1.477 1.589 0.638 0.715 0.92 1.73 0.19 2.50

1.1 0.767 0.856 0.640 0.740 1.05 1.51 0.22 2.00

1.2 0.753 0.756 0.686 0.689 1.18 1.71 0.26 2.37

1.3 0.753 0.756 0.704 0.707 1.27 2.00 0.29 2.94

1.4 0.753 0.758 0.714 0.719 1.31 2.37 0.29 3.71

1.5 0.752 0.763 0.717 0.728 1.33 2.65 0.29 4.32

Table 2.3: Comparison between the orbital periods that lead to periods less than 30min

within a Hubble time and orbital periods that result from tidal capture with a 1.4M⊙ neutron

star, for different secondary masses and Z = 0.01. Column 1: initial secondary mass,
columns 2-3: initial period range that leads to ultra-short periods, columns 4-5: RLOF-

period period range that leads to ultra-short periods, columns 6-7: ZAMS and TAMS radii,

columns 8-9: orbital periods for a circularised binary with capture distances of 1 × Rzams

and 3 × Rtams. Masses are inM⊙, radii in R⊙ and periods in days.

radius R of that star, i.e. d ≤ 3R (Fabian et al. 1975). The capture rate is linear in d; thus
one third of the captures is a direct hit, which completely destroys the main-sequence star.

Capture may lead to a binary if R ∼< d ≤ 3R. The lower bound may in fact be higher, since
too close a capture still does serious damage to the star (Ray et al. 1987). The orbit imme-

diately after capture is highly eccentric, and after it circularises its semi-major axis is twice

the capture distance: ac ≃ 2d. Hence orbits formed by tidal capture have a semi-major axis
(after circularisation) 2R ∼< ac ≤ 6R, or with Kepler’s law:

0.23 d

(

R

R⊙

)3/2 (

M⊙

M + m

)1/2

∼< Pb ≤ 1.20 d

(

R

R⊙

)3/2 (

M⊙

M + m

)1/2

(2.5)

Immediately after the capture, the main-sequence star is highly perturbed, but after a

thermal timescale it may settle on its equilibrium radius, and continue its evolution. The

range of orbital periods depends on the radius that the star has when it is captured. In gen-

eral, the period range is bounded below by the period found by entering twice the zero-age

main-sequence radius into Eq. 2.5 and above by entering six times the terminal-age main-

sequence radius (because a star evolved beyond this point does not evolve towards shorter

periods). In Table 2.3 we list the period ranges expected in this simplest description of cap-

ture. Unless the central density of the globular cluster evolves dramatically, the probability

of capture is approximately flat in time. The period after capture close to the zero-age main

sequence should be compared to the initial binary period in our computations; the period

after capture close to terminal-age main sequence should be compared to the period of a

system close to filling its Roche lobe. In either case, we see that capture leads to a period

distribution which covers an appreciable fraction of the period distribution that we cover in

our computations. This means that our conclusion that only an exceedingly small fraction

of all binaries with a neutron star evolve towards periods less than 30min holds also for

tidally captured binaries.
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We have taken the simplest description of tidal capture. From the above argument it is

clear that changing the assumptions made about tidal capture is unlikely to change our con-

clusion, that evolution from magnetically driven converging evolution does not contribute

significantly to the population of ultra-compact binaries. Even if tidal capture would mira-

culously focus the resulting orbits into the narrow range required for converging evolution,

the fact would remain that each systems spends only a small fraction of its time converging

from 20min to 11min.

If the binary in NGC6624 were the only ultra-short-period binary in a globular cluster,

one could accept an evolutionary scenario with low probability. It is thus worthy of note that

our statistical argument depends critically on the observation that the 20.6min (or 13.2min)

period of the binary in NGC6712 is real. So far, this period has been measured only once

in a single HST data set, and an independent new measurement is very desirable, to exclude

definitely that the first measurement of a significant periodicity is a statistical fluke.

2.5.2 Comparison to Pylyser & Savonije

The question arises why Pylyser & Savonije (1988) and Pylyser & Savonije (1989), here-

after PS1 and PS2, did not find ultra-compact systems in their study. We tried to reproduce

their models with a 1.0M⊙ compact primary and a 1.5M⊙ secondary (models A25-I25

in PS1 and A25-Z25 in PS2) because these are best documented and they find the lowest

minimum period here (38min for A25 in PS2). We calculated models with the same initial

masses, mixing length (l/Hp = 1.5), metallicity (Z = 0.02) and without overshooting.
Figure 2.12 compares their results to our calculations as the minimum period (Pmin) as a

function of the period where Roche-lobe overflow starts (Prlof ).

We find the bifurcation period at much larger Prlof , which is due to the fact that our

stars rotate (about 25% of the difference, according to test calculations we have done) and

increased opacities. Both effects increase the radii of our model stars, so that they must be

placed in a larger orbit to fill their Roche lobe at the same stage of evolution. It seems that

shifting the two solid lines of PS1 and PS2 horizontally can approximately compensate for

this, but the lines must be shifted over different amounts. Hence, a gap arises between what

at first sight appears to be a continuous Prlof -range from PS1 and PS2. The fact that they

find the minimum period at the limit of each range, and the fact that these two points are

both at Prlof = 0.70 d, but give very different minimum periods (100min and 38min for
PS1 and PS2 respectively), are supporting the evidence for the existence of this gap. The

cause for the gap seems to be clear; in PS2 an accretion induced collapse (AIC) occurs when

the primary reaches 1.44M⊙, whereas in PS1 no such event happens. The AIC decreases

the mass of the compact object and increases the orbital period so that the further evolution

can no longer be compared to that of systems without an AIC.

In our more complete series of models, shown in Fig. 2.12, the lowest minimum period

we find is 7.0min, and is reached after 12.4Gyr.
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Figure 2.12: Comparison of our models (dashed line) to the models A25-I25 of PS1 and

A25-Z25 of PS2 (solid lines). See the text for details.

2.5.3 Comparison to Podsiadlowski et al.

We chose the parameters of our models as similar as possible to those of Podsiadlowski

et al. (2002) (see Sect. 2.2), to see if we could reproduce their results for a 1.4M⊙ neutron

star and a 1.0M⊙ secondary. Indeed, the results of our calculations are qualitatively very

similar to their findings in their Fig. 16 and their statement that binaries with an orbital

period of 5minutes can be achieved without a spiral-in, although we need slightly larger

initial periods to get to the same minimum period. Podsiadlowski et al. (2002) display

their results as a function of time since Roche-lobe overflow started, and because of this we

cannot ascertain the total age of the binary at the minimum period. The red and blue model

in their Fig. 16 reach minimum periods of about 9 and 7 minutes, at approximately 4.5 and

5.5 Gyr after the beginning of RLOF. We find very similar results, and in addition we find

the total ages of these systems: 14 and 17Gyr respectively. We find that it takes 13.4Gyr

to reach an orbital period of 11.4 minutes, the shortest period observed for an X-ray binary,

and more than 35Gyr to shrink the orbit to 5minutes. We conclude that it is not possible to

create systems with orbital periods less than 10min this way, within a Hubble time.

Podsiadlowski et al. (2002) find that there is a rather large range of initial orbital periods

(13 – 17.7 hr) that lead to a minimum period that is less than 30minutes. We find for

the same condition a Prlof of 15.3 – 17.2 hr, which is considerably smaller. This is firstly
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because ourmodel stars have a slightly larger radius. Part of the explanation of the increased

radius is given by the rotation of the star, although this can only account for 20% of the

difference in the Prlof -range, and by the different helium abundance (Podsiadlowski et al.

(2002) use Y = 0.27, we have Y = 0.26), which explains 10%. The larger radius shifts
the whole Prlof -range to larger orbital period. Secondly, we limit our range to systems that

reach their minimum period before the Hubble time, so that it is cut off above a certain Prlof .

What Podsiadlowski et al. (2002) call the initial period is the period at which RLOF

initiates, and which we call Prlof . In the time before RLOF began, the magnetic braking

may have played a role in shrinking the pre-RLOF orbit of the systems as listed in Table 2.3.

2.5.4 Comparison with observations and other models

The main result from our computations is that, in a population where all X-ray binaries

evolve from close detached binaries of a main-sequence star and a neutron star, systems

with orbital periods less than 30-40 minutes and with decreasing orbital periods are very

rare. If we accept that the orbital period of the X-ray source in NGC6624 is decreasing

intrinsically (and not just observationally due to gravitational acceleration), we must accept

that it is a statistical fluke, or look for a different origin.

In this respect it would be important to know more about the orbital periods and their

derivatives of other X-ray sources in globular clusters. A very short orbital period is detected

for just one other bright X-ray source, in NGC6712, as a regular variation of 0.044(7)mag

in one series of 53 F300W (wide U) filter HST observations with WFPC2 in 1995; aliasing

allows two solutions at 13.2 or 20.6 minutes (Homer et al. 1996). Homer et al. (1996) opt for

the longer period, on the basis of the low X-ray luminosity that reflects a low mass-transfer

rate and a model in which the donor to the neutron star is a white dwarf (Verbunt 1987).

We note that the same choice for the longer period would follow for the magnetic-capture

model. The period derivative of the source in NGC6712 is not known. The argument that

as many as half of the bright X-ray sources in globular clusters have ultra-short periods is

based on the similarity of various properties of those X-ray sources with the properties of

the X-ray sources in NGC6624 and NGC6712. This argument is correct only if the X-ray

source in NGC6712 indeed has an ultra-short period. It is therefore important that this

period is confirmed; which will also settle between the aliases of 13.2 and 20.6 minutes.

Measurement of the period derivative will be very difficult. It is therefore of interest

to know how many ultra-compact binaries one would expect irrespective of their period

derivative, in the magnetic capture model. Alas, our computations stop a short time after

the minimum period, so that we do not have an accurate estimate of the time spent at positive

period derivative. Nonetheless, inspection of our results as reflected in Fig. 2.1 shows that

the evolution away from the minimum period is only slightly slower than the evolution

towards it. Thus, the number of systems expected at the shortest period range of between 10-

30 minutes would only be a factor few higher than the number in the same period range with

decreasing period only. This implies that the presence of even two systems with periods less

than 30 minutes among 13 globular cluster systems excludes the magnetic-capture scenario
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as the dominant formation process. The conclusion is true a fortiori if more such systems

are discovered.

A donor in an ultra-compact system can also be a helium-burning star. To bring such a

small star into contact, a spiral-in must have occurred (Savonije et al. 1986). The progenitor

of such a helium-burning star would be more massive than the main-sequence star found in

globular clusters, and Verbunt (1987) argued that this excludes such donors for sources in

globular clusters. However, more massive stars can be made in direct collisions: if such a

more massive star ends up in a binary with a neutron star, further evolution can lead to a

helium-burning donor in an ultra-compact system. This scenario may gain in importance if

tidal capture is indeed less efficient, as indicated by a high fraction of systems with ultra-

short periods. It allows negative derivatives of the orbital period.

Since the measurement of the intrinsic derivative of the orbital period is so difficult, it

is useful to look for other observational properties that can discriminate between the dif-

ferent origins of an ultra-compact binary. With this in mind, we refer to Table 2.2 where

some properties of ultra-short-period systems are listed that follow for the magnetic-capture

model, in particular the mass-transfer rate at various periods, and the abundances of the

more important elements. A pure white-dwarf donor, whittled down to a mass less than

0.1M⊙, would have no hydrogen if it was a helium white dwarf; and no hydrogen and

no helium if it was a carbon-oxygen white dwarf. Therefore, if hydrogen is discovered in

the spectrum of an ultra-compact X-ray binary, this indicates evolution through magnetic

capture and the orbital period must still be decreasing. Close to the minimum period the

hydrogen abundance at the surface goes to zero and thus is no longer discriminant between

models.

Acknowledgements We thank P.P. Eggleton for making available to us the latest version

of his binary evolution code. We also thank F. Rasio for his suggestions to improve this

chapter.




