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0 Computer exercise 0: Code template

Code listing 0.1 shows a Python template that reads our tailored extract from the Hipparcos
catalogue [1] BrightStars-1.1.csv with stars up to seventh magnitude, sets the plot bound-
aries, selects the stars within those boundaries, and plots them to screen. Since you can use this
as a code template for the next Computer exercises, you should make sure that you understand
every line before you continue. The result of the code can be found in Figure 1. Before you
continue, you should run the code and verify whether it produces the correct result.

Listing 0.1: plot hipparcos.py: a Python code template to read the Hipparcos catalogue and
plot a star map. The result is displayed in Fig. 1.

1 #!/bin/env python3

2

3 import math as m

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 r2d = m.degrees (1)

8 d2r = 1.0/ r2d

9

10 # Read columns 2-4 from the input file , skipping the first 11 lines:

11 hip = np.loadtxt(’BrightStars -1.1. csv’, skiprows =11, delimiter=’,’,

12 usecols =(1 ,2,3))

13

14 # Use comprehensible array names:

15 mag = hip[:,0]

16 ra = hip[:,1]

17 dec = hip[:,2]

18 limMag = 7.0

19 sizes = 30*(0.5 + (limMag -mag )/3.0)**2

20

21 # Set the plot boundaries:

22 raMin = 26.0* d2r

23 raMax = 50.0* d2r

24 decMin = 10.0* d2r

25 decMax = 30.0* d2r

26

27 # Select the stars within the boundaries:

28 sel = (ra > raMin) & (ra < raMax) & (dec > decMin) & (dec < decMax)

29 # sel = ra < 1e6 # Select all stars

30

31 plt.figure(figsize =(9 ,7)) # Set png size to 900 x700 (dpi =100)

32

33 # Make a scatter plot. s contains the *surface areas* of the circles:

34 plt.scatter(ra[sel]*r2d , dec[sel]*r2d , s=sizes[sel])

35

36 plt.axis(’scaled ’)

37 plt.axis([ raMax*r2d ,raMin*r2d , decMin*r2d ,decMax*r2d])

38 plt.xlabel(r’$\alpha_ {2000}$ ($^\circ$)’)
39 plt.ylabel(r’$\delta_ {2000}$ ($^\circ$)’)
40

41 plt.tight_layout ()

42 plt.show()

43 # plt.savefig (" hipparcos.pdf")

44 plt.close()

Line 1 of the code is called the shebang. This tells the script which interpreter to use, in this
case Python 3 on a Linux system. You can adapt this to your system, or run the code instead
with e.g.

python3 plot hipparcos template.py.
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In lines 3–5, we import three Python modules we need:

• The standard math module for mathematical functions and constants.

• The numpy module for powerful mathematical functions, in particular involving arrays [2].
We use for example the np.loadtxt() function to read the data file and store its contents
in the 2D array hip.

• The pyplot module from the matplotlib library for plotting [3]. For example, we use
the function plt.scatter() to create a scatter plot with circles at the coordinates of the
stars.

The as statement allows us to henceforth invoke the three modules as m, np and plt respectively.

0.1 Questions

1. What is the value of r2d in line 7? What does this mean?

2. How would the code in line 11 change if we would also read the Hipparcos number of each
star (the first column in the file) into the hip array? Which other code lines should be
adapted in order to keep the code working?

3. Explain the square power (**2) when computing star sizes from their magnitudes in line 18.

4. What is the shape of the array sel? What are its elements?

5. Write the plot to hipparcos.pdf instead of to screen. What is the file size of the resulting
pdf file?

6. How does the size of the pdf file change when you uncomment code line 30 in order to
select all stars? How is the run time of your program affected? Explain the changes.

7. What does line 37 (plt.axis(’scaled’)) do? Why is this necessary? Comment it out
to see what happens. Replace ’scaled’ in line 37 with ’equal’. How does this solve the
same issue?

8. What happens if you print the axis labels without the leading r?

9. What happens if you comment out line 42 (plt.tight layout())?
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Figure 1: The sky map resulting from Code listing 0.1.
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1 Computer exercise 1: Ecliptical map

Adapt the code from the previous exercise to make a plot of the constellation Aries in ecliptic
coordinates. In order to do so, write the function eq2ecl() that takes the right ascension,
declination and the obliquity of the ecliptic as input parameters and returns ecliptic latitude
and longitude. A function in Python can be defined as follows:

1 def eq2ecl(ra ,dec , eps):

2 <code to convert ra, dec & eps to lon & lat >

3 return lon ,lat

We can call the function with:
lon,lat = eq2ecl(ra,dec, eps)

It is important to realise that this function will be called with NumPy arrays as input parameters
and return values. Hence, the code that computes lat,lon should use the NumPy versions of
e.g. the trigonometric functions — for example np.sin(ra) rather than m.sin(ra).

Design and implement a way to compute and set the plot limits of the ecliptic map, using the
function eq2ecl().

Finally, ensure that you select the stars to plot according to the newly computed map limits.

2 Computer exercise 2: Horizontal map

Adapt your code from the previous exercises to reproduce the map of Figure 2. First, work out
what the local stellar time is for this instance and compute the hour angle of your stars. Second,
write a Python function called par2horiz() to transform parallactic coordinates (hour angle
and declination) and the geographical latitude of the observer to azimuth and altitude, using
NumPy functions. Use a limiting magnitude of 4.5 m to reduce the number of stars you plot
and to scale the plot symbols. Ignore proper motion and precession.
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Figure 2: A sky map in horizontal coordinates. Stars near the horizon at sunrise for φG =
51.178◦ at the vernal equinox 2020. The stars just above A = 270◦ belong to the constellation
Pisces, the (near) square of bright stars is Pegasus/Andromeda.

3 Computer exercise 3: Proper motion and precession

In this exercise, we will recreate Figure 2, but for different epochs and equinoxes.

3.1 Julian day

We will need a linear time variable below. Write the Python function julianDay() that takes
year, month and (decimal) day as input and returns the Julian day. You can use the floor()

function from the math module. Assume that the Julian calendar is used when the year is 1582
or earlier. Verify that the noons (UT) of the new-year’s days of the years -3000, 1000 and 2000
have JDs 625308.0, 2086308.0 and 2451545.0, respectively. Compare your answer to that of
Exercise 5a. Compute the number of days between the years 1100 and 1200, and between 1500
and 1600, and explain the difference.

3.2 Proper motion

Write the Python function properMotion() that takes the start JD and target JD, as well as
(arrays containing) equatorial coordinates and the corresponding proper motions, and returns
the positions for the target epoch. Remember to use NumPy functions. Test your function
against the position of Vega from Exercise 5a. Replot Figure 2, and use a second scatter call
to plot the same selection of stars, for the equinox of 2000 but epoch -10 000, in the same plot.

3.3 Precession

Write the Python function precessHip() that takes a target JD, as well as (arrays containing)
equatorial coordinates, and returns the precessed positions for the target equinox using the
method described in Section 2.8.4 of the lecture notes. Since we use the Hipparcos catalogue,
the initial JD is a constant and we can use the simplified equations. Remember to use NumPy
functions and make sure the right ascensions end up in the correct quadrant. Test your function
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against the position of Vega from Exercise 5b. Replot Figure 2, and use a second scatter call
to plot the same selection of stars, but for the equinox and epoch of the year 1000, in the same
plot.

3.4 Does the Bear bathe in the Ocean?

Today, the Big Dipper (Ursa Maior) is not circumpolar when seen from Athens, Greece. The
ancient Greek poet Homeros however, claimed that the (Great) Bear never bathes in the ocean.
We will make a polar plot of the region of 60◦ around the Celestial North Pole to see whether
these claims are true. A polar scatter plot can be set up in Matplotlib using

1 plt.figure(figsize =(7 ,7)) # Set plot size to 700 x700 (dpi =100)

2 ax = plt.subplot (111, projection=’polar ’) # Set up a polar plot

3 ax.scatter(theta , r, s=sizes) # Call scatter

4 ax.set_ylim(0, rMax) # Set the radius range

Here, the arrays r and theta contain the polar coordinates of the stars. Plot a selection of your
star catalogue for the current epoch up to 60◦ from the pole. In addition, plot a circle around
the pole which contains all circumpolar stars as seen from Athens, Greece (latitude = 38◦) and
show that the tail of the Bear is not circumpolar. Then, make the same plot for the epoch of
800 BCE and show that the constellation now is circumpolar. You can create and draw a (red)
circle with radius radius in the polar plot by e.g.:

1 rCirc = np.ones (101)* radius # Fill an array with ones and multiply them

2 thCirc = np.arange (101)/100*m.pi*2 # Fill an array with the range 0 - 2 pi

3 ax.plot(thCirc , rCirc , ’r’) # Draw a red (’r ’) circle

4 Computer exercise 4: Computing planet positions and mag-
nitudes

4.1 VSOP

The VSOP87 theory [4] describes the heliocentric (or barycentric) ecliptical coordinates (or
orbital elements) as periodic terms. There are six different versions; we will use VSOP87D, which
provides heliocentric ecliptic spherical coordinates for the equinox of the day. The necessary files
can be downloaded from the cited URL by clicking on “FTP”. Each file contains the data for a
single planet. We will need the VSOP87D.* files.

4.1.1 Heliocentric ecliptical coordinates

The function readVSOP() reads the periodic terms to compute a heliocentric ecliptical planet
position from a VSOP87D file and returns a 2D array for each of the ecliptical longitude, latitude
and distance. The arrays have different numbers of rows, and each row i contains the variables

[pi, ai, bi, ci] ,

where p corresponds to the variable power in Code listing 4.1. Note that you will need to install
the Python package/module fortranformat.

Listing 4.1: readVSOP.py: reads a VSOP87D file and returns the periodic terms.

1 def readVSOP(fileName ):

2 inFile = open(fileName ,’r’)

3

4 import fortranformat as ff

5 formatHeader = ff.FortranRecordReader(’(40x,I3, 16x,I1,I8)’) # Header
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6 formatBody = ff.FortranRecordReader(’(79x,F18.11,F14.11,F20 .11)’) # Body

7

8 lonTerms =[]; latTerms =[]; radTerms =[]

9

10 for iBlock in range (3*6): # 3 variables (l,b,r), up to 6 powers (0-5)

11 line = inFile.readline ()

12 var ,power ,nTerm = formatHeader.read(line)

13 #print(var ,power ,nTerm)

14 if line == ’’: break # EoF

15

16 for iLine in range(nTerm):

17 line = inFile.readline ()

18 a,b,c = formatBody.read(line)

19 #print(iLine , var ,power , a,b,c)

20

21 if var == 1: lonTerms.append ([power , a,b,c]) # var =1: ecl. lon.

22 if var == 2: latTerms.append ([power , a,b,c]) # var =2: ecl. lat.

23 if var == 3: radTerms.append ([power , a,b,c]) # var =3: distance

24

25 return lonTerms ,latTerms ,radTerms

From these terms, one can compute the heliocentric ecliptical longitude, latitude (in radians)
and distance (in AU):

L,B,R =
∑
i

tpiJm ai cos (bi + ci tJm) , (1)

where tJm is the time since 2000, expressed in Julian millennia:

tJm =
JDE− 2451545

365250
. (2)

Write a Python function computeLBR() that takes the JD(E) and lonTerms, latTerms and
radTerms as input, and returns L, B and R. Verify that on 1 Jan -1000, L,B,R ≈ 1.5925 rad,
4.15 × 10−7 rad and 0.98608 AU, respectively, for the Earth, and 0.5462 rad, −0.01612 rad and
5.0967 AU for Jupiter.

4.1.2 Geocentric ecliptical coordinates

To convert the heliocentric coordinates to geocentric ones, we compute the heliocentric positions
of both the planet of interest and of the Earth and subtract the second from the first. This is
easier when using rectangular coordinates:

x = R cosB cosL (3)

y = R cosB sinL (4)

z = R sinB (5)

After subtraction, we need to convert the resulting geocentric rectangular ecliptic coordinates
(x, y, z) back to spherical, using the inverse of Eqs. 3–5.

Write a Python function hc2gc() that takes the heliocentric coordinates (L,B,R) of a planet
and of the Earth as input parameters, and returns the geocentric spherical ecliptical coordinates
(l, b, r) of the planet. On 1 Jan -1000, Jupiter’s l, b, r should be ∼ 0.363 rad, −0.018 rad and
4.68 AU.

4.1.3 Conversion of ecliptical to equatorial coordinates

In order to make local sky maps, we need to be able to convert (geocentric) ecliptical coordinates
to equatorial ones (and thence to the azimuthal system). For historical calculations, we need to
use the contemporary value of the obliquity of the ecliptic.
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1. Write a Python function obliquity() that computes ε from the JD. Show that the obliq-
uity in the years 2000, 1000 and -3000 is (approximately) equal to 23.439◦, 23.569◦ and
24.02◦ respectively.

2. Write a Python function ecl2eq() that converts a geocentric planet position from ecliptical
to equatorial coordinates, where the obliquity is one of the input parameters. Show that
on 1 Jan -1000, Jupiter’s α, δ ≈ 0.341, 0.128 rad.

4.2 Magnitudes

In order to compute the visual magnitude of a planet, we need its phase angle1 φ:

φ = arccos

(
R2 + r2 − r2�

2Rr

)
, (6)

where φ ∈ [0, π] ≥ 0, R and r are the heliocentric and geocentric distances of the planet,
respectively, and r� is the heliocentric distance of the Earth.

The visual magnitude of a planet is then given by

V = 5 log10 (Rr) + a0 + a1 φ + a2 φ
2 + a3 φ

3, (7)

with φ in radians. The ai are provided by

Mer. Ven.1 Ven.2 Mars Jup. Sat. Ur. Nep.
a0 −0.60 −4.47 +0.98 −1.52 −9.40 −8.88 −7.19 −6.87
a1 2.8533 0.5901 −0.5844 0.9167 0.2865 2.5210 0.1146 —
a2 −1.6020 0.1871 — — — — — —
a3 0.5680 0.0245 — — — — — —

The results for Mercury are valid in the range 0.0349 < φ < 2.967. For Venus, two expressions
are available — the first is used for 0.0384 < φ < 2.855 and the second for 2.855 < φ < 2.971.
Outside these ranges, the planets are very close to the Sun, and the expressions are not valid.

This method has been used by the Astronomical Almanac since 2007 [5], taking into account
the errata [6] and converting coefficients for use with φ expressed in radians.

Write a Python function magnPlanet() that takes the planet number (1=Mercury, 8=Neptune),
the distances to the Sun and the Earth and the distance between the Earth and the Sun as input
parameters, and returns the planet’s magnitude. Show that on 1 Jan -1000, Jupiter’s magnitude
is about −2.46.

4.2.1 The magnitude of Saturn’s rings

For Saturn, we need to add the brightness of its rings to the magnitude of the planet. A simplified
method2 starts by computing the inclination of the ring i and the longitude of the ascending
node Ω

i = 0.49; (8)

Ω = 2.96 + 0.024 tJc, (9)

where tJc is the time in Julian centuries since 2000 and where i and Ω are expressed in radians.
Next, compute the sine of the latitude B of the Earth, as seen from Saturn and with respect to

1The phase angle is the angle Sun–planet–Earth, i.e. the angular separation in the sky between the Sun and
the Earth as seen from the planet.

2The mean and maximum absolute deviations from a more accurate algorithm for 105 random trials over the
last 5 ka were 0.014 m and 0.041 m, respectively.
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the plane of the rings:3

sinB = sin i cosβ sin(λ− Ω) − cos i sinβ, (10)

where λ and β are the geocentric ecliptical longitude and latitude of Saturn, respectively. The
visual magnitude of Saturn’s rings can then be approximated by

VSr = −2.60 | sinB| + 1.25 sin2B. (11)

This term should be added to the magnitude of Saturn computed above.

Write a Python function magnSatRing() that takes the JD and the geocentric ecliptical coor-
dinates of Saturn and returns the magnitude of Saturn’s rings. You can use Eq. 2 as inspiration
to compute tJc. Show that on 1 Jan -1000, Saturn’s magnitude is ≈ −0.28.

4.3 Putting it all together

Reproduce the ecliptical maps in Figure 3.9 from the lecture notes (both in a single plot, if you
like). Note that Jupiter moves ∼30◦ per year. Of the grey lines in that Figure, only plot the
ecliptic. Ensure that Jupiter’s disc has the size that reflects its magnitude.

5 Computer exercise 5: Computing the position of the Moon

Computing a precise Moon position is more complex than computing that of the planets, due
to e.g. the perturbations by the planets and the fact that the Earth is not a sphere. In addition,
the Moon is so close to the Earth that different observers on different continents may see a
different position of the Moon with respect to the background stars (parallax ), which must be
taken into account. Since this parallax changes with the Earth’s rotation, we will also need to
know the exact orientation of the Earth in its slowly decelerating rotation, for which we will
need to compute the local sidereal time and use the quantity known as ∆T . We will ignore
a slight wobble of the Earth’s rotation axis called nutation (for the Moon and other celestial
objects), since it is small and only affects the position of an object with respect to the horizon
(or equator), not to other celestial objects.

5.1 ELP2000-82/85

The lunar theories ELP 2000-82 and ELP 2000-85 were published in 1983 and 1988, respectively,
by researchers from the same institute that brought forth the VSOP87 paper [7, 8]. The ELP
theory is an elaborate fit, similar to the VSOP and has roughly the same number of periodic
terms as the VSOP87 theory for all planets together. The data files can be downloaded, together
with Fortran code to compute the position [7]. We will use an abridged version published by
Meeus [9], but with arguments in radians rather than degrees.

The lab-class webpage provides the file moonposMeeus.csv with most of the data, which can be
read with the Python function readELP82bData() below.

1 def readELP82bData(inFile ):

2 """ Read the periodic terms for the ELP82B theory , selected by Meeus and

3 return them in two arrays: one for longitude and distance , and one for

4 latitude.

5 """

6

7 # Longitude and radius (6 columns: 4 args , 2 coefs):

8 lrTerms = np.genfromtxt(inFile , delimiter=’,’, skip_header =1, max_rows =60)

3If B is positive, we see the northern side of the rings from Earth, while B = 0 indicates a ring-plane crossing.
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t0Jc t1Jc t2Jc t3Jc t4Jc
λm 3.8103408236 8399.7091116339958 -2.755176757e-5 3.239043e-8 -2.6771e-10
D 5.1984665298 7771.377144834 -3.2845e-5 3.197347e-8 -1.5436512e-10
M� 6.240060127 628.301955167 -2.681e-6 7.1267017e-10
M$ 2.355555637 8328.691424759 1.52566e-4 2.5041e-7 -1.18633e-9
F 1.627905158 8433.466158061 -6.3773e-5 -4.94988e-9 2.02167e-11
E 1 -0.002516 -0.0000074
A1 2.090032 2.301199
A2 0.926595 8364.7398477
A3 5.4707345 8399.6847253

Table 1: Coefficients for the lunar-orbit arguments.

9

10 # Latitude (5 columns: 4 args , 1 coef):

11 bTerms = np.genfromtxt(inFile , delimiter=’,’, skip_header =61, max_rows =60)

12

13 return lrTerms ,bTerms

After reading the file, we will compute a number of quantities, which are all polynomials of
the time in Julian centuries since 2000 (tJc) with the coefficients shown in Table 1, where the
first coefficient is the constant, the second is for the tJc term, etc. These are the Moon’s mean
longitude λm, mean elongation D, mean anomaly M$ and argument of latitude F . M� is the
Sun’s mean anomaly and E is a correction factor to take into account the decreasing eccentricity
of the Earth’s orbit. A1–A3 are used to correct for perturbations by the planets. All but E are
angles, expressed in radians and should be brought between 0 and 2π (and converted to degrees
if desired) before you print them. We will put the four values called the Delauney arguments in
an array: α = [D,M�,M$, F ].

Then for each line i in the ELP file, and separately for the variables λ and R on the one hand,
and β on the other, compute the four arguments γ for the ELP theory using the four integer
coefficients for the four Delauney arguments:

γi =
3∑

j=0

bi,j · αj . (12)

Next, for the longitude, latitude and distance, sum the periodic terms as follows:

λ, β =

Nterms∑
i

sin γi · Ci · E|bi,1|; (13)

R =

Nterms∑
i

cos γi · Ci · E|bi,1|. (14)

Note that the integers bi,j are identical for the longitude and distance and provided in the first
four columns of the Python variable lrTerms, while the coefficients Ci for λ and R are in the
fifth and sixth column respectively. As a consequence, the arguments γi are also identical for λ
and R. For β, the integer arguments b and coefficients C are in columns 0-3 and 4 of bTerms,
respectively.
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To take into account perturbations by the planets, we compute the corrections (in radians)

∆λ = 6.908× 10−5 sinA1 + 3.4243× 10−5 sin(λm − F ) + 5.55× 10−6 sin(A2); (15)

∆β = −3.9008× 10−5 sin(λm) + 6.667× 10−6 sin(A3) + 3.0543× 10−6 sin(A1 − F )

+3.0543× 10−6 sin(A1 + F ) + 2.2166× 10−6 sin(λm −M$)

−2.007× 10−6 sin(λm +M$). (16)

Finally, we add up all components, including the mean values:

λ = (λ+ λm + ∆λ) mod 2π; (17)

β = β + ∆β; (18)

R = R+ 385000.56. (19)

The geocentric ecliptical coordinates λ and β are expressed in radians, the distance R in km.

Write a Python function called moonLBR() that takes the JD(E)4 and the arrays lrTerms and
bTerms as input parameters and returns the geocentric ecliptical coordinates of the Moon.

5.2 Greenwich and local sidereal time

To compute the Greenwich mean5 sidereal time in radians for a given instance, we can use the
polynomial fit [5, Eq. 6.66]:

θ0 = 4.89496121088131 + 6.30038809894828323 · tJd + 5.05711849× 10−15 · t2Jd
− 4.378× 10−28 · t3Jd − 8.1601415× 10−29 · t4Jd − 2.7445× 10−36 · t5Jd,

(20)

where tJd is the time since 2000 in Julian days

tJd = JD − 2 451 545, (21)

and you should use the JD to compute tJd, not the JDE.

To compute the local (mean) sidereal time (LST), we add the geographical longitude of the
observer λobs, with λobs > 0 if east of Greenwich:

θ = θ0 + λobs. (22)

Before printing the variables θ0 or θ, you should ensure their values lie between 0 and 2π.

Write a Python function localSiderealTime() that takes the JD and geographical longitude
as input parameters and returns the local mean sidereal time in radians (between 0 and 2π).

5.3 The decelerating Earth rotation and ∆T

The Earth’s rotation is slowly decelerating, mainly due to the tidal effects from the Moon, and at
an unpredictable rate. For the past, historical observations are used to determine the difference
between the true orientation of the Earth and the orientation the Earth would have if each day
had been 86 400 s long and the phase was that of ∼ 1820. This difference is called ∆T and is
expressed in seconds.

In this document, we will assume a constant rate of lengthening of the day of 1.8 ms/century,
and that ∆T0 = 12 s in the year 1820. We are not interested in the length of a day at any time,

4See Sect. 5.3 for the JDE. For now, we will call moonLBR() with the JD, but this should be replaced with the
JDE later on.

5i.e., not corrected for nutation
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but at the cumulative effect this amounts to over the centuries or millennia. The constant is
therefore in fact a deceleration factor of 1.8 ms/day/century and depends on the time since 1820
squared. When expressed in seconds, this can be written as:

∆T ≈ ∆T0 +
1

2
a (t− t1820)2

≈ 12 +
1

2
· 1.8× 10−3 s

86400 s · (36525 · 86400 s)
· ((JD− JD1820) · 86400 s)2

≈ 12 +
1

2

1.8× 10−3 s

36525
(JD− JD1820)2. (23)

We will use ∆T to correct the Julian day to the ephemeris JD, or JDE:

JDE = JD +
∆T

86400
. (24)

Write a Python function DeltaT() that takes the JD as input and returns ∆T in seconds. We
will use this function from now on to compute both the JD and JDE for any instance we are
interested in. When computing the dynamics of the Solar system, e.g. the position of Sun, Moon
and planets, we will use the JDE instead of the JD. Hence, the (time associated with the) JDE
is also referred to as “dynamical time”.

Remember that the JD is in fact a “local” time which applies only to planet Earth since it is
based on the orientation of the Earth in its axis rotation. JDE concerns the time “out there”
in the Solar system. When we compute the position of solar-system objects for a historical date
at, say, noon in Greenwich, we know exactly the number of days (of variable length) that passed
since that date occurred, but not the amount of time. Using ∆T , we can compute the latter
and compute how many seconds ago this happened.

Note that ∆T was roughly zero around 1820, is currently positive and was also positive in the
(distant) past — ∼ 10580 s (∼ 3 h) around the year 0. Also note that our assumption for the
constant lengthening of the day is reasonable, but not perfect. In reality the changes are quite
irregular, and since ∆T can be measured to some accuracy, one could use those values. See e.g.
[10] for a graphical display of the measurements, a machine-readable table, and references.

5.4 Diurnal parallax and topocentric positions

The position for the Moon (and planets) that we have computed so far are geocentric, i.e. for an
imaginary observer located in the centre of the Earth. Since most observers are on the Earth’s
surface, we need to compute the topocentric positions of these objects for the exact location of
the observer.

The difference in apparent sky position of a given celestial object between the centre of the Earth
and an observer on the surface (or between two observers at different locations) is known as the
parallax. This effect is of course stronger for nearby objects like the Moon and is practically
zero for nearly infinitely remote stars. For planets, the effects can usually be ignored, except for
e.g. the accurate calculation of a Venus transit.

Since the parallax depends on the geometry between geocentre, observer location and celestial
object, and the Earth rotates about its axis, the effect of the parallax is variable during the day.
It is therefore known as the diurnal parallax. Due to the parallax, an object appears lower in the
sky (closer to the horizon) than expected based on calculations using the geocentric position.
The parallax in azimuth is very small, and would be zero if the Earth were a sphere.
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We will follow the treatment of Meeus [9] in his Chapters 11 and 40 to convert geocentric
positions to the topocentric system in ecliptical coordinates taking into account the flattening
of the Earth and the elevation of the observer above sea level.

For the equatorial and polar radii of the Earth, we use

R⊕,eq = 6378136.6; (25)

R⊕,pol
R⊕,eq

= 0.996647189335. (26)

Then

tanu =
R⊕,pol
R⊕,eq

tanϕobs; (27)

ρ sinϕ′ =
R⊕,pol
R⊕,eq

sinu +
hobs
R⊕,eq

sinϕobs; (28)

ρ cosϕ′ = cosu+
hobs
R⊕,eq

cosϕobs, (29)

where ϕobs is the geographical latitude of the observer, and hobs her altitude above sea level in
the same units as R⊕,eq. The variable ρ is the geocentric distance of the observer expressed in
equatorial radii, taking into account the non-sphericity of the Earth, and ϕ′ would be equal to
ϕobs if the Earth were a sphere.

We compute the horizontal parallax, i.e. the maximum possible difference in altitude, of an
object with distance d as

sinπ =
sin (R⊕,eq/AU)

d/AU
. (30)

Then compute
N = cosλ cosβ − ρ cosϕ′ sinπ cos θ, (31)

where λ, β are the ecliptical coordinates and θ is the local sidereal time.

The topocentric ecliptical longitude and latitude and the topocentric semi-diameter of the object
can then be computed from:

tanλ′ =
sinλ cosβ − sinπ (ρ sinϕ′ sin ε + ρ cosϕ′ cos ε sin θ)

N
; (32)

tanβ′ =
cosλ′ (sinβ − sinπ (ρ sinϕ′ cos ε − ρ cosϕ′ sin ε sin θ))

N
; (33)

sin r′ =
cosλ′ cosβ′ sin r

N
. (34)

In these expressions, a ′ denotes the topocentric equivalent of a geocentric variable, ε is the
obliquity of the ecliptic and r is the apparent radius of the object, as it appears in the sky (i.e.,
an angle).

5.5 Nutation

Astronomical nutation is the slight wobble on the Earth’s axis about a mean direction described
by precession, on a range of short timescales. The main causes are the perturbations of the Sun
and Moon on the non-spherical Earth, and the strongest period is ∼18.6 years, the timescale on
which the orientation of the lunar orbit changes.

The effect of nutation is on the order of 18” at most, and only changes the orientation of
the equatorial (and hence horizontal) coordinate systems with respect to the ecliptic, not the
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positions between celestial bodies. Since a difference in position of 18” is not much when
compared to the horizon6 or variations in atmospheric refraction due to the weather, we will
ignore nutation here. More information on nutation can be found on Wikipedia [11].

5.6 Spica and the Moon in the year 98

On 11 January of the year 98, the Moon was observed close to Spica (+0.98 m), as seen from
Rome. Compute the position, distance and diameter of the Moon for a number of instances
(e.g. every hour, and then refining it within the hour of interest) for this date and location, and
compare the apparent distance between the two bodies to the diameter of the Moon. Devise
a parameter that is an indication of the distance between the lunar limb and Spica, and that
clearly shows at any time whether an occultation occurs or not. At what time (UT) was the
closest approach? How close did the two bodies get? Did the Moon occult Spica, and if so, what
were the start and end times? The geographical longitude and latitude of Rome are 12.4667◦E
and 41.8833◦N.7
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