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Goals of this project

Intermediate goals

Show that Markov-Chain Monte Carlo (MCMC) with a large
number of parameters (> 10) on LIGO data can be done

Test MCMC code on software and hardware injections

Final goals

Do parameter estimation on LIGO detection of inspiral signal

Use as a follow-up for template-based search to:

Confirm spinning inspiral nature of signal
Determine physical parameters (masses, spin, position, . . . )

Provide final stage in automated CBC pipeline
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Astrophysical goals

Populations of compact binaries

Mass distributions

Spins of BHs; alignment of spins

Association of GW and EM events, e.g. GRB

Empirical merger rates

NS-NS/BH-NS/BH-BH merger ratios

Evolution of massive binaries

Evolution of massive stars (in binaries)

Constraints on CE evolution

Initial-mass range for BH progenitors
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Predicted detection rates

Realistic estimate:

Rates (yr−1) Horizon (Mpc)
NS-NS BH-NS BH-BH NS-NS BH-NS BH-BH

Initial 0.015 0.004 0.01 32 67 160
Enhanced 0.15 0.04 0.11 71 149 349
Advanced 20 5.7 16 364 767 1850

Plausible, optimistic estimate:

Rates (yr−1) Horizon (Mpc)
NS-NS BH-NS BH-BH NS-NS BH-NS BH-BH

Initial 0.15 0.13 1.7 32 67 160
Enhanced 1.5 1.4 18 71 149 349
Advanced 200 190 2700 364 767 1850

Estimates assume MNS = 1.4 M� and MBH = 10 M�

CBC group, rates document
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Spinning BH binaries: Simple waveform

Röver non-spinning code

Waveform template:

Analytic waveform
Restricted 1.5 PN
Simple precession
12-parameter set: ~λ

Apostolatos et al., 1994
Typical data stretch (flow – coalescence):
5.5s, 400 wave cycles, 5 precession cycles
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Detector noise

Using 1–3 detectors
from L1, H1, and
Virgo

Gaussian, stationary
noise, at designed
sensitivity level

Noise is
uncorrelated
between detectors
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Detector noise

Using 1–2 4-km
detectors L1, H1:

Gaussian,
stationary
noise
LIGO S5
playground
data
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Detector noise

The game:

Do software
injections

Retrieve physical
parameters

Here, ΣSNR = 17
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Compute posterior distribution

Find posterior density of the model parameters

Bayesian approach

Coherent network of detectors:

PDF(~λ) ∝ prior(~λ)×
∏

i Li(d |~λ)

The likelihood for each detector i is:

Li(d |~λ) ∝ exp

−2
∫ ∞

0

∣∣∣d̃(f )− m̃(~λ, f )
∣∣∣2

Sn(f )
df



Use Markov-Chain Monte Carlo to sample the posterior



Introduction MCMC Sampling modes Finding modes Future work

Markov Chains

Choose starting point for chain: ~λ1

Calculate its likelihood: Lj ≡ L(d |~λj)

do j = 1, N

draw random jump size ∆~λj from Gaussian with ~σ

consider new state ~λj+1 = ~λj + ∆~λj

calculate Lj+1 ≡ L(d |~λj+1)

if( Lj+1
Lj

> ran unif[0,1] ) then

Accept new state ~λj+1

Increase jump size ~σ

else
Reject new state; ~λj+1 = ~λj

Decrease jump size ~σ

end if
save state ~λj+1

end do (j)
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Correlated update proposals

Problem

Often (strong)
correlations exist

Correlations make
random jump
proposals very
inefficient

Solution

Calculate covariance matrix from previous block of iterations

Propose jumps according to these correlations
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MCMC runs – setup

MCMC code

Adaptive random-walk Metropolis sampler

12 parameters: masses: M & η, distance: log dL, time and
phase at coalescence: ϕc & tc, position: R.A. & Dec, spin
magnitude: aspin, angle between ~S and ~L: θSL, precession
phase: αc, orientation of J0: sin θJ0 & ϕJ0

Software injections in simulated, Gaussian noise or (hopefully)
clean S5 playground data

MCMC runs

Start chain from true parameter values (short burn-in) to assess
efficiency of sampling the PDF

Start chain from offset values to determine speed and quality of
mode detection
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Correlated MCMC

Set-up

Use 80% correlated update proposals – more efficient

Chains presented here, for 1 & 2 LIGO detectors:

Length: 7; 3 × 106 states
Burn-in 106; 5×105 states
Run time: 10 days on a 2.8 GHz CPU

5 serial chains from the true values (one per CPU)

Signal parameters

Fiducial binary: M1,2 =10+1.4 M�, dL = 16− 21 Mpc

Spin: aspin =0.0, 0.1, 0.5, 0.8, θSL =20◦, 55◦

Using H1 @ SNR ≈12.7, H1L1 @ SNR ≈17.0

Signals injected in simulated Gaussian noise
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Example MCMC run

Parameters:

H1 & L1

M : 10, 1.4 M�

aspin =0.5, θSL =20◦

ΣSNR ≈ 17.7

Movies/mcmc_04.mpeg
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Results: 1 detector

Parameters:

H1 only

M =10, 1.4 M�

dL =18.7 Mpc

aspin =0.5

θSL =20◦

Network SNR
≈ 12.7

∆’s are 90%
probability

Dashed lines
show true
values
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Results: 2 detectors

Parameters:

H1 & L1

M =10, 1.4 M�

dL =18.7 Mpc

aspin =0.5

θSL =20◦

Network SNR
≈ 17.0

∆’s are 90%
probability

Dashed lines
show true
values
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Run without signal

Parameters:

H1 only

Gaussian noise
was used

MCMC run was
started as usual,
but no signal
was injected
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Changing spin: 1 detector

Parameters:

H1 only

M =10, 1.4 M�

dL≈16− 21 Mpc

aspin =0.0, 0.1,
0.5, 0.8

θSL =20◦

SNR ≈ 12.7

Dashed lines
show true
values
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Changing spin: 2 detectors

Parameters:

H1 & L1

M =10, 1.4 M�

dL≈16− 21 Mpc

aspin =0.0, 0.1,
0.5, 0.8

θSL =20◦

Network SNR ≈
17.0

Dashed lines
show true
values
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Changing the number of detectors

Parameters:

H1, H1 & L1

M =10, 1.4 M�

dL =18.7 Mpc

aspin =0.5

θSL =20◦

Network SNR ≈
12.7, 17.0

Dashed lines
show true
values
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Sky map: 1 detector

Parameters:

H1 only

M =10, 1.4 M�

dL≈16− 21 Mpc

aspin =0.0, 0.1,
0.5, 0.8

θSL =20◦

SNR ≈ 12.7

Dashed lines
show true
position
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Sky map: 2 detectors

Parameters:

H1 & L1

M =10, 1.4 M�

dL≈16− 21 Mpc

aspin =0.0, 0.1,
0.5, 0.8

θSL =20◦

Network SNR ≈
17.0

Dashed lines
show true
position
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2D PDF: masses

Parameters:

H1 & L1

M =10, 1.4 M�

dL≈16− 21 Mpc

aspin =0.0, 0.1,
0.5, 0.8

θSL =20◦

Network SNR ≈
17.0

Dashed lines
show true
position
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Results

Width of the 90%-probability ranges (∆90%):

ndet aspin θSL dL SNR Ma
1 Ma

2 tc dL aspin θSL RAb Decl. θJ0
ϕJ0

(◦) (Mpc) (%) (%) (s) (%) (%) (◦) (◦) (◦) (◦) (◦)

1 0.0 0 13.6 12.7 85 65 0.042 150 200 157** 241 119 158 326
1 0.1 20 12.7 12.7 52** 41* 0.041 156 194 133** 248 135 132 320
1 0.1 55 12.3 12.7 34* 25* 0.023 85 185 126 75 94 52 354
1 0.5 20 13.8 12.7 79 64 0.040 143 127 89 254 108 89 259
1 0.5 55 18.8 12.7 64 48 0.022 100 67 79 63 29 20 93
1 0.8 20 14.7 12.7 80* 62 0.027 117 29 39 94 88 60 271
1 0.8 55 20.9 12.7 102 83 0.024 113 58 75 150 93 43 255

2 0.0 0 13.5 17.0 66 49 0.028 92 200 167** 80 83 154 323
2 0.1 20 13.0 17.0 41* 32* 0.015** 72 170 120* 72* 76 120 354
2 0.1 55 13.5 17.0 35** 27 0.008 40 189 115* 3.6 23 23* 8.2
2 0.5 20 15.2 17.0 48 37 0.006 33 16 38 3.0 15 17 9.1
2 0.5 55 20.8 17.0 43 32 0.006 54 51 65 3.0 12* 20 14
2 0.8 20 16.2 17.0 49 37 0.006 40 15 24 3.8 18 18 12
2 0.8 55 23.2 17.0 33 25 0.006 57 29 26 3.3 10 9.2 16

∗: The true value lies outside the 90%-probability range, but inside 95%.
∗∗: The true value lies outside the 95%-probability range, but inside 99%.
a : The values of M1 and M2 are derived fromM and η, used in the MCMC code.
b : The column RA shows the value ∆90% · cos 40◦ , (40◦ is the declination of the source) and converted to degrees
to make the value comparable to that of the declination.
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Conclusions

Accuracies:

Detection with 1 detector: degeneracy in sky position and binary
orientation:

no or low spin: whole sky/all directions
intermediate or high spin: multimodal distribution

Detection with 2 detectors can produce astronomically relevant
information:

individual masses and spin with ∼ 30− 40% accuracy
distance with ∼ 40% accuracy
position and orientation down to typically 10− 20◦

timing better than 0.01s

Combination of the above can lead to association with E&M
detection (e.g. gamma-ray burst)



Introduction MCMC Sampling modes Finding modes Future work

Finding the modes of the PDFs

Offset start

Start chains with offset initial parameter values

Choose initial values randomly from a range around the true
values

Typical offset: M: ∼0.1 M�, tc: ∼0.03s, rest: ∼ random

Efficiency

True modes will eventually be found by the chains

Keyword: efficiency of sampling: how to we find the modes
within e.g. a Hubble time?

This becomes a more important issue for higher spin
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Correlations increase with spin
Parameters:

H1 & L1

M1 = 10 M�

M2 = 1.4 M�

dL = 13 Mpc

aspin = 0.1, 0.8

θSL = 55◦

Network SNR
≈ 18.2, 30.5
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Structured parameter space

Parameters:

H1 & L1

aspin = 0.5

θSL = 20◦

Network SNR
≈ 27.2

10 chains

Offset start

Black dashed
lines are true
values
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Structured parameter space

Parameters:

H1 & L1

aspin = 0.5

θSL = 20◦

Network SNR
≈ 27.2

10 chains

Offset start

Black dashed
lines are true
values
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Parallel tempering

Parallel chains

Use ∼5-10 parallel chains of
temperatures T = 1, . . . , Tmax

Acceptance probability for chain

with temperature T :
(

Li
Li−1

) 1
T

Hotter chains explore wider
ranges, at lower likelihood

Probability for swap between

chains:
(

Lh
Lc

) 1
Tc
− 1

Th , Th > Tc

Hotter chains pass information to
cooler chains
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Converging chains

Parameters:

H1 & L1

aspin = 0.5

θSL = 20◦

Network SNR
≈ 17.7

4 chains

Offset start

Black dashed
lines are true
values
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Improve sampling

Included techniques
Parallel tempering
Mix of uncorrelated and correlated updates
Extra-large steps

Planned techniques
Partial updates of only intrinsic/extrinsic parameters
‘Smart’ updates:

use knowledge of waveform to identify near-degenerate
islands
take large steps top hop islands
beach-to-mountain-top routine
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Conclusions

Sampling modes

Our code samples PDFs fine, using one or multiple detectors, for
no, small or high spin

We can give a good indication of the expected accuracies with
which the astrophysical parameters of the binary can be
determined

For two or more detectors, the accuracy of tc , position and
distance is good enough for association with E&M detection

Finding modes

For intermediate or high spin, parameter space is strongly
structured

Strong correlations between parameters demand efficient,
perhaps even ‘smart’ sampling



Introduction MCMC Sampling modes Finding modes Future work

Future work

MCMC wish list
Keep improving sampling efficiency, find modes faster
Explore wider range of parameters
Improve signal:

more realistic inspiral (Vivien):
add second spin
higher PN

add ring-down and merger
use NR waveforms with physical parameters

CBC pipeline
Add MCMC to data-analysis pipeline
Map parameters of filter triggers into priors for MCMC
Include noise as one of the unknown parameters
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