duction	MCMC	Sampling modes	Finding modes	Future w

Intro

Parameter estimation of spinning binary black-hole inspirals using MCMC

Marc van der Sluys¹

Vivien Raymond¹, Ilya Mandel¹, Christian Röver^{2,3}, Alexander Stroeer⁴, Nelson Christensen⁵, Vicky Kalogera¹, Alberto Vecchio^{1,6}, John Veitch⁶, Renate Meyer² ¹Northwestern University, ²University of Auckland, ³AEI Hannover, ⁴Goddard SFC, ⁵Carleton College, ⁶University of Birmingham

Penn State, March 27, 2008

(日)

Introduction	MCMC 000000	Sampling modes	Finding modes	Future work
Outline				
IntroduGoa	uction ls			

- Waveform and noise
- 2 МСМС
 - Likelihood calculation
 - Markov chains
 - MCMC setup
- 3 Sampling modes
 - Results
 - Dependence on number of detectors and spin
 - Accuracy of parameter estimation
- 4 Finding modes
 - Offset runs
 - Spins, correlations and structure
 - Improving sampling
- 5 Future work

Introduction •••••	MCMC	Sampling modes	Finding modes	Future work
		-		

Goals of this project

Intermediate goals

- Show that Markov-Chain Monte Carlo (MCMC) with a large number of parameters (> 10) on LIGO data can be done
- Test MCMC code on software and hardware injections

Final goals

- Do parameter estimation on LIGO detection of inspiral signal
- Use as a follow-up for template-based search to:
 - Confirm spinning inspiral nature of signal
 - Determine physical parameters (masses, spin, position, ...)
- Provide final stage in automated CBC pipeline

(日)

Introduction	MCMC	Sampling modes	Finding modes	Future work
000000				

イロト イポト イヨト イヨト

Astrophysical goals

Populations of compact binaries

- Mass distributions
- Spins of BHs; alignment of spins
- Association of GW and EM events, e.g. GRB
- Empirical merger rates
- NS-NS/BH-NS/BH-BH merger ratios

Evolution of massive binaries

- Evolution of massive stars (in binaries)
- Constraints on CE evolution
- Initial-mass range for BH progenitors

Introduction	MCMC	Sampling modes	Finding modes	Future work
000000				

Predicted detection rates

Realistic estimate:							
	Rates (yr ⁻¹)			Ho	orizon (Mp	oc)	
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH	
Initial	0.015	0.004	0.01	32	67	160	
Enhanced	0.15	0.04	0.11	71	149	349	
Advanced	20	5.7	16	364	767	1850	

Plausible, optimistic estimate:							
	Rates (yr ⁻¹)			Ho	orizon (Mp	oc)	
	NS-NS	BH-NS	BH-BH	NS-NS	BH-NS	BH-BH	
Initial	0.15	0.13	1.7	32	67	160	
Enhanced	1.5	1.4	18	71	149	349	
Advanced	200	190	2700	364	767	1850	

Estimates assume $M_{
m NS} = 1.4\,M_{\odot}$ and $M_{
m BH} = 10\,M_{\odot}$

CBC group, rates document

æ.

ヘロト ヘロト ヘビト ヘビト

Introduction	MCMC 000000	Sampling modes	Finding modes	Future work
Detector	r noise			

- Using 1–3 detectors from L1, H1, and Virgo
- Gaussian, stationary noise, at designed sensitivity level
- Noise is uncorrelated between detectors

Introduction	MCMC 000000	Sampling modes	Finding modes	Future work
Detector				

Detector noise

- Using 1–2 4-km detectors L1, H1:
 - Gaussian, stationary noise
 - LIGO S5 playground data

・ロト ・ 四ト ・ ヨト ・ ヨト

NORTHWESTERN

æ

Introduction	MCMC 000000	Sampling modes	Finding modes	Future work
Balla alla a				

Introduction 0000000	MCMC ●○○○○○	Sampling modes	Finding modes	Future work

Compute posterior distribution

- Find posterior density of the model parameters
- Bayesian approach
- Coherent network of detectors:
 - PDF $(\vec{\lambda}) \propto \operatorname{prior}(\vec{\lambda}) \times \prod_i L_i(\boldsymbol{d}|\vec{\lambda})$
- The likelihood for each detector *i* is:

$$L_i(d|\vec{\lambda}) \propto \exp\left(-2\int_0^\infty rac{\left| ilde{d}(f) - ilde{m}(\vec{\lambda}, f)
ight|^2}{S_n(f)} df
ight)$$

Use Markov-Chain Monte Carlo to sample the posterior

Introduction 0000000	MCMC ○●○○○○	Sampling modes	Finding modes	Future work
Markov Chains				

- Choose starting point for chain: $\vec{\lambda}_1$
- Calculate its likelihood: $L_j \equiv L(d|\vec{\lambda}_j)$
- do *j* = 1, *N*
 - draw random jump size $\Delta \vec{\lambda}_j$ from Gaussian with $\vec{\sigma}$
 - consider new state $\vec{\lambda}_{j+1} = \vec{\lambda}_j + \Delta \vec{\lambda}_j$
 - calculate $L_{j+1} \equiv L(d|\vec{\lambda}_{j+1})$
 - if($\frac{L_{j+1}}{L_i} > \operatorname{ran_unif}[0,1]$) then
 - Accept new state $\vec{\lambda}_{j+1}$
 - Increase jump size $\vec{\sigma}$

else

- Reject new state; $\vec{\lambda}_{j+1} = \vec{\lambda}_j$
- Decrease jump size $\vec{\sigma}$
- end if
- save state $\vec{\lambda}_{j+1}$
- end do (j)

3

・ロン ・四 と ・ ヨ と ・ ヨ と

Introduction	MCMC	Sampling modes	Finding modes	Future work
	00000			

Correlated update proposals

Problem

- Often (strong) correlations exist
- Correlations make random jump proposals very inefficient

・ロット (雪) (日) (日)

UNIVERSITY

Solution

- Calculate covariance matrix from previous block of iterations
- Propose jumps according to these correlations

Introduction	MCMC	Sampling modes	Finding modes	Future work
	000000		0000000	

MCMC runs – setup

MCMC code

- Adaptive random-walk Metropolis sampler
- 12 parameters: masses: *M* & η, distance: log *d*_L, time and phase at coalescence: φ_c & *t*_c, position: R.A. & Dec, spin magnitude: *a*_{spin}, angle between *S* and *L*: θ_{SL}, precession phase: α_c, orientation of *J*₀: sin θ_{J0} & φ_{J0}
- Software injections in simulated, Gaussian noise or (hopefully) clean S5 playground data

MCMC runs

- Start chain from true parameter values (short burn-in) to assess efficiency of sampling the PDF
- Start chain from offset values to determine speed and quality of mode detection

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Introduction	Sampling modes	Finding modes	Future work

Correlated MCMC

Set-up

- Use 80% correlated update proposals more efficient
- Chains presented here, for 1 & 2 LIGO detectors:
 - Length: 7; 3 \times 10⁶ states
 - Burn-in 10^6 ; 5×10^5 states
 - Run time: 10 days on a 2.8 GHz CPU
- 5 serial chains from the true values (one per CPU)

Signal parameters

- Fiducial binary: $M_{1,2} = 10 + 1.4 M_{\odot}$, $d_{L} = 16 21 Mpc$
- Spin: a_{spin}=0.0, 0.1, 0.5, 0.8, θ_{SL}=20°, 55°
- Using H1 @ SNR ≈12.7, H1L1 @ SNR ≈17.0
- Signals injected in simulated Gaussian noise

Introduction

MCMC 00000 Sampling modes

Finding modes

Future work

Example MCMC run

Parameters:

- H1 & L1
- *M* : 10, 1.4 *M*_☉
- $a_{\rm spin} = 0.5, \theta_{\rm SL} = 20^{\circ}$
- $\Sigma SNR \approx 17.7$

э

Introduction	MCMC 000000	Sampling modes ●oooooooooo	Finding modes	Future work

Results: 1 detector

Parameters:

- H1 only
- $M = 10, 1.4 M_{\odot}$
- $d_L = 18.7 \, \text{Mpc}$
- $a_{\rm spin} = 0.5$
- $\theta_{\rm SL} = 20^{\circ}$
- Network SNR ≈ 12.7
- Δ's are 90% probability
- Dashed lines show true values

э

- H1 & L1
- $M = 10, 1.4 M_{\odot}$
- $d_l = 18.7 \, \text{Mpc}$
- $a_{\rm spin} = 0.5$
- $\theta_{\rm SL} = 20^{\circ}$
- Network SNR ≈ 17.0
- Δ's are 90% probability
- Dashed lines show true values

3

Introduction 0000000	MCMC 000000	Sampling modes ⊙⊙●○○○○○○○	Finding modes	Future work
Dup withou	ut aignal			

- H1 only
- Gaussian noise ٩ was used
- MCMC run was started as usual, but no signal was injected

NORTHWESTERN

- H1 only
- $M = 10, 1.4 M_{\odot}$
- $d_l \approx 16 21 \,\mathrm{Mpc}$
- $a_{\rm spin} = 0.0, 0.1,$ 0.5, 0.8
- $\theta_{\rm SL} = 20^{\circ}$
- SNR \approx 12.7
- Dashed lines show true values

NORTHWESTERN

- H1 & L1
- $M = 10, 1.4 M_{\odot}$
- $d_l \approx 16 21 \,\mathrm{Mpc}$
- $a_{\rm spin} = 0.0, 0.1,$ 0.5.0.8
- $\theta_{\rm SL} = 20^{\circ}$
- Network SNR \approx 17.0
- Dashed lines show true values

NORTHWESTERN

3

Introduction 0000000	MCMC 000000	Sampling modes	Finding modes	Future work
Sky man	1 detect	har		

- H1 only
- $M = 10, 1.4 M_{\odot}$
- $d_L \approx 16 21 \,\mathrm{Mpc}$
- $a_{\rm spin} = 0.0, 0.1,$ 0.5, 0.8
- $\theta_{\rm SL} = 20^{\circ}$
- SNR \approx 12.7
- Dashed lines show true position

NORTHWESTERN

Introduction	MCMC 000000	Sampling modes ○○○○○○○●○○	Finding modes	Future work

Introduction	MCMC 000000	Sampling modes	Finding modes	Future work
Results				

Width of the 90%-probability ranges ($\Delta_{90\%}$):

n _{det}	$a_{\rm spin}$	$\theta_{\rm SL}$	dL	SNR	М <mark>а</mark>	M_2^a	t _c	$d_{\rm L}$	$a_{\rm spin}$	$\theta_{\rm SL}$	RA ^b	Decl.	θ_{J_0}	φ_{J_0}
		(°)	(Mpc)		(%)	(%)	(s)	(%)	(%)	(°)	(°)	(°)	(°)	(°)
1	0.0	0	13.6	12.7	85	65	0.042	150	200	157**	241	119	158	326
1	0.1	20	12.7	12.7	52**	41*	0.041	156	194	133**	248	135	132	320
1	0.1	55	12.3	12.7	34*	25*	0.023	85	185	126	75	94	52	354
1	0.5	20	13.8	12.7	79	64	0.040	143	127	89	254	108	89	259
1	0.5	55	18.8	12.7	64	48	0.022	100	67	79	63	29	20	93
1	0.8	20	14.7	12.7	80*	62	0.027	117	29	39	94	88	60	271
1	0.8	55	20.9	12.7	102	83	0.024	113	58	75	150	93	43	255
2	0.0	0	13.5	17.0	66	49	0.028	92	200	167**	80	83	154	323
2	0.1	20	13.0	17.0	41*	32*	0.015**	72	170	120*	72*	76	120	354
2	0.1	55	13.5	17.0	35**	27	0.008	40	189	115*	3.6	23	23*	8.2
2	0.5	20	15.2	17.0	48	37	0.006	33	16	38	3.0	15	17	9.1
2	0.5	55	20.8	17.0	43	32	0.006	54	51	65	3.0	12*	20	14
2	0.8	20	16.2	17.0	49	37	0.006	40	15	24	3.8	18	18	12
2	0.8	55	23.2	17.0	33	25	0.006	57	29	26	3.3	10	9.2	16

*: The true value lies outside the 90%-probability range, but inside 95%.

**: The true value lies outside the 95%-probability range, but inside 99%.

^{*a*}: The values of M_1 and M_2 are derived from \mathcal{M} and η , used in the MCMC code.

^b: The column RA shows the value $\Delta_{90\%} \cdot \cos 40^{\circ}$, (40° is the declination of the source) and converted to degrees to make the value comparable to that of the declination.

A D > A P > A D > A D >

3

Introduction 0000000	MCMC 000000	Sampling modes ○○○○○○○○●	Finding modes	Future work

Conclusions

Accuracies:

- Detection with 1 detector: degeneracy in sky position and binary orientation:
 - no or low spin: whole sky/all directions
 - intermediate or high spin: multimodal distribution
- Detection with 2 detectors can produce astronomically relevant information:
 - $\bullet\,$ individual masses and spin with $\sim 30-40\%$ accuracy
 - distance with \sim 40% accuracy
 - position and orientation down to typically 10 20°
 - timing better than 0.01s
- Combination of the above can lead to association with E&M detection (*e.g.* gamma-ray burst)

・ロット (雪) (日) (日)

A D > A P > A D > A D >

3

Finding the modes of the PDFs

Offset start

- Start chains with offset initial parameter values
- Choose initial values randomly from a range around the true values
- Typical offset: \mathcal{M} : ~0.1 M_{\odot} , t_c : ~0.03s, rest: ~ random

Efficiency

- True modes will eventually be found by the chains
- Keyword: efficiency of sampling: how to we find the modes within *e.g.* a Hubble time?
- This becomes a more important issue for higher spin

Introduction	M(CMC	S	ampling n	10des 000		Finding modes ○●○○○○○○	Future work
Correlat	ions	inc	reas	e wit	h sp	oin		
	· · · · ·	 	· · · · · · · · · · · · · · · · · · ·		+ + + + + + 1011	101		Parameters: H1 & L1 $M_1 = 10 M_{\odot}$ $M_2 = 1.4 M_{\odot}$
	M _e	η	a _{spin}	$\vartheta_{\rm SL}$	R.A.	Dec.	¢	$d_L = 13 \mathrm{Mpc}$
M _c	$\overline{\ }$	0.22	0.42	0.17	-0.40	0.19	•	• $a_{\rm spin} = 0.1, 0.8$
η	-0.27		-0.34	-0.53	-0.07	-0.04		$ heta_{\rm SL} = 55^\circ$
a _{spin}	-0.61	0.89		-0.04	0.11	0.62		$\approx 18.2, 30.5$
$\vartheta_{ m SL}$	0.66	-0.87	-0.99			-0.34		
R.A.	-0.36		0.02	-0.02	\searrow	0.12		
Dec.	-0.23	0.08	0.18	-0.20	-0.05			NORTHWESTERN UNIVERSITY

Offset start

(日)

Black dashed lines are true values

Introduction	MCMC 000000	Sampling modes	Finding modes ○○○●○○○○	Future work
<u>.</u>		-		

Structured parameter space

MCMC 000000 Sampling modes

Finding modes

Parallel tempering

Parallel chains

- Use ∼5-10 parallel chains of temperatures T = 1,..., T_{max}
- Acceptance probability for chain with temperature $T: \left(\frac{L_i}{L_{i-1}}\right)^{\frac{1}{T}}$
- Hotter chains explore wider ranges, at lower likelihood
- Probability for swap between chains: $\left(\frac{L_h}{L_c}\right)^{\frac{1}{T_c}-\frac{1}{T_h}}$, $T_h > T_c$
- Hotter chains pass information to cooler chains

Introduction	MCMC 000000	Sampling modes	Finding modes ○○○○●○○	Future v

Converging chains

Parameters:

- H1 & L1
- $a_{spin} = 0.5$
- $\theta_{\rm SL} = 20^{\circ}$
- Network SNR ≈ 17.7
- 4 chains
- Offset start
- Black dashed lines are true values

ork

Introduction	MCMC 000000	Sampling modes	Finding modes ○○○○○●○	Future work

Improve sampling

Included techniques

- Parallel tempering
- Mix of uncorrelated and correlated updates
- Extra-large steps

Planned techniques

- Partial updates of only intrinsic/extrinsic parameters
- Smart' updates:
 - use knowledge of waveform to identify near-degenerate islands

イロト イポト イヨト イヨト

- take large steps top hop islands
- beach-to-mountain-top routine

Introduction MCMC	MCMC 000000	Sampling modes	Finding modes ○○○○○○●	Future work
• •				

Conclusions

Sampling modes

- Our code samples PDFs fine, using one or multiple detectors, for no, small or high spin
- We can give a good indication of the expected accuracies with which the astrophysical parameters of the binary can be determined
- For two or more detectors, the accuracy of t_c, position and distance is good enough for association with E&M detection

Finding modes

- For intermediate or high spin, parameter space is strongly structured
- Strong correlations between parameters demand efficient, perhaps even 'smart' sampling

STERN

Introduction	MCMC	Sampling modes	Finding modes	Future work

Future work

MCMC wish list

- Keep improving sampling efficiency, find modes faster
- Explore wider range of parameters
- Improve signal:
 - more realistic inspiral (Vivien):
 - add second spin
 - higher PN
 - add ring-down and merger
 - use NR waveforms with physical parameters

CBC pipeline

- Add MCMC to data-analysis pipeline
- Map parameters of filter triggers into priors for MCMC
- Include noise as one of the unknown parameters

STERN