ntroduction	Observations	Magnetic capture	Direct collisions	Conclusions

The formation of ultra-compact binaries in globular clusters

Marc van der Sluys¹

Frank Verbunt², Onno Pols²

¹Northwestern University, ²Utrecht University

Birmingham, October 19, 2007

Introduction 00	Observations 0000000000	Magnetic capture	Direct collisions	Conclusions

Outline

X-ray binaries

Observations

- X-ray binaries in globular clusters
- Identification of sources
- Direct period measurement
- Indirect indication of the period

3 Magnetic capture

- Magnetic braking
- Creating a population
- Statistics

Direct collisions

Binary formation through stellar collisions

5 Conclusions

Introduction	Observations	Magnetic capture	Direct collisions	Conclusions

Evolution of a binary star

Magnetic capture

Direct collisions

Conclusions

Low-mass X-ray binaries

Mechanism

- Low-mass star transfers mass to neutron star or black hole
- Gravitational acceleration causes X-rays:

$$L_{\rm x} \approx \frac{GM_{\rm ns}}{R_{\rm ns}} \dot{M}_{\rm tr}$$

 Optical radiation comes from reprocessed X-rays in accretion disk

BinSim

BinSim, R. Hynes, LSU

Introduction	Observations	Magnetic capture	Direct collisions	Conclusions
00				

The X-ray sky

X-ray binaries

- Bright X-ray sources: in galactic plane, concentrated towards galactic centre
- 13 bright X-ray sources in globular clusters
- Binaries with $P_{\rm orb} \lesssim 60 \, {\rm min} \, {\rm are}$ called ultra-compact

Ariel V X-ray map of the sky Her X-1 NGC4151 Coma Virao Sco X Cen A Cyg X-1 Cen X-3 Tycho Vela X-1 Vela SNR Cas A Krah Perseus NGC1851 M31 NGC7078 SMC X-1 NGC6712 NGC6624 Ariel V 3rd Cataloaue

100

•1000 cts/s

XRBs are over-abundant in GCs:

- 1 in 10⁹ stars in galaxy is XRB
- 1 in 10⁶ stars in globular clusters is XRB

Observations

Magnetic capture

Direct collisions

Conclusions

M 15/NGC 7078 – Chandra

X-ray sources in M15

White & Angelini, 2001

Magnetic capture

Direct collisions

Conclusions

Identification of sources: Cees Bassa

ESO & Chandra

- Pointing of a telescope has limited accuracy (~ 1")
- Identification with optical star requires maximum accuracy
- This is done in four steps:
- Step 1: find stars from astrometric catalogue (i.e. with very accurate positions) in ESO 2.2m Wide Field Camera image and use this to position WFC image

UNIVERSITY

Magnetic capture

Direct collisions

Conclusions

Identification of sources: Cees Bassa

ESO & Chandra

- Step 2: compare positions of stars in HST image with those of WFC image
- Thus: get accurate positions of HST stars
- Step 3: find stars in error circles of Chandra X-ray sources where error is comprised of
 - absolute accuracy astrometric catalogue
 - transfer WFC to catalogue
 - transfer HST to WFC
 - accuracy of X-ray position

NGC 6752, HST

Magnetic capture

Direct collisions

Conclusions

Identification of sources: Cees Bassa

ESO & Chandra

 Step 4: compare colours of stars within error circles with normal cluster stars and select deviants

Figure caption

- Left: colour of the star (X-axis) as a function of brightness (Y-axis). Circles surround stars from within error boxes
- *Right:* H α emission as function of brightness

NGC 6752

Observations

Magnetic capture

Direct collisions

Conclusions

M 15/NGC 7078 - HST

Magnetic capture

Direct collisions

Conclusions

Direct period measurement

Period for M15-X2

Dieball et al.:

- FUV study (less crowding)
- Magnitude modulation: 0.06m
- > 3000 cycles
- Period: 22.6 min.

Magnitude modulation

roduction	Observations	Magnetic capture	Direct collisions
	0000000000		

Indirect period indication

Optical vs. X-ray flux

- Optical flux from reprocessed X-rays in disk
- Scales with X-ray flux and size of disk
- Hence, $f_{\rm opt}/f_{\rm X} \propto R_{\rm disk} \propto a_{\rm orb}$

Van Paradijs & McClintock, 1994

Conclusions

ntroduction	Observations	Magnetic capture	Direct collisions	Conclus
	0000000000			

Indirect period indication

Burst maximum

- Maximum luminosity during burst is Eddington luminosity: $L_{\rm Edd} = \frac{4\pi c G M}{\sigma_{\rm T}}$
- Electron scattering cross section depends on hydrogen content: $\sigma_{\rm T} =$ 0.2 (1 + X) $\frac{\rm cm^2}{\rm g}$

troduction	Observations	Magnetic capture	Direct collisions	Concl
	0000000000			

Indirect period indication

X-ray spectrum

- Temperature *T*₀ of the seed photons comes from a Compton model
- Temperature T_{in} is observed from the inner disk
- Ultracompacts show $T_0 \sim T_{in}$

Int oc	troduction	Observations	Magnetic capture	Di 0000000 0	rect collisions	Conclusions
X	K-ray sourc	es in globi	ular cluste	rs		
	Known perio	d information				
	Cluster	Position	Porb	In	direct indicati	on
				low f_{opt}/f_x	burst max.	X-spect.
	NGC 1851	0512–40	?	U	U	U
	NGC 6440	1745–20	8.7 hr	—	—	N
	NGC 6441	1746–37	5.7 hr	_	Ν	N
	NGC 6624	1820–30	11.4 min	U	U	U
	NGC 6652	1836–33	?	U	U	U
	NGC 6712	1850–09	21/13 min	U	U	U
	NGC 7078	2127+12b	17.1 hr	_	_	-
	NGC 7078	2127+12a	22.6 min	_	U	- 1
	Terzan 1	1732–30	?	_	_	- 1
	Terzan 2	1724–31	?	_	U	N
	Terzan 5	1745–25	?	_	_	U
	Terzan 6	1751–31	12.4 hr	_	_	N
	Liller 1	1730–33	?	—	—	-]

• Up to 6 of the 13 X-ray binaries in globular clusters are ultra-compact!

UNIVERSITY

• 11-min system has negative P

Observations

Magnetic capture

Direct collisions

Conclusions

Scenario 1: Magnetic braking

Magnetic wind

- Rotating stars can have magnetic fields
- Evolved stars can have strong winds
- Stellar wind follows magnetic-field lines
- Star loses angular momentum efficiently
- Tidal coupling causes orbit to shrink in case of a binary

Magnetic capture ○●○○○○○○○○○○○○○ Direct collisions

Magnetic capture

Scenario

- Low-mass donor
- Mass transfer starts after main sequence
- Lose angular momentum through MB
- Minimum period can be as low as 5 min.
- Period derivative can be negative

Observations

Magnetic capture

Direct collisions

Conclusions

Magnetic capture

Plotting with BinSim

We can feed the output of the binary-evolution code into BinSim

Z = 0.01, 1.1 M_{\odot} , $P_i = 0.85$ d; animation with BinSim

Introduction	Observations 0000000000	Magnetic capture	Direct collisions	Conclusions
D :	1			

Binary-evolution models

We calculated grids of models with a neutron star of $1.4\,M_{\odot}$ and a main-sequence donor star.

Initial parameters

- $M_{\rm i}$: 0.7 1.5 M_{\odot}, with $\Delta M_{\rm i}$ = 0.1 M_{\odot}
- P_i : 0.35 2.5 d, with ΔP_i = 0.25, 0.05 of 0.01 d
- Z: 0.0001, 0.002, 0.01 and 0.02
- Magnetic-braking prescriptions:
 - 🚺 Verbunt & Zwaan, 1981
 - Peduced Verbunt & Zwaan
 - Sills et al., 2000 (saturated)
 - No MB, gravitational waves only

Magnetic capture

Direct collisions

Binary-evolution models

Behaviour

- Models with low *P*_i converge and rebound at *P*_{orb} ~ 70 min
- Models with high *P*_i diverge
- Narrow range of *P*_i leads to ultra-short period

1. Start with the calculated grid

STERN

Introduction	Observations 000000000	Magnetic capture ○○○○○●○○○○○○○○○	Direct collisions	Conclusions
Creating	a population			

2. Pick a random P_i

3TERN

3. Select the bracketing tracks

STERN

STERN

t (Gyr)

10

5

N

0

STERN

15

STERN

Introd	uction

Magnetic capture

Direct collisions

Statistics

Results for a given donor mass

- Generate 10⁶ systems
- Some artefacts at long periods
- Short-period distribution is representative

Introduction	Observations	Magnetic capture	Direct collisions	Conclusior
		000000000000000000000000000000000000000		

Statistics: compare initial-mass functions

Combining distributions for all masses

- Complete grid has 10⁷ systems
- Exact IMF unimportant
- Mass grid not too coarse

$Z = 0.01, 10^7$ binaries

UNIVERSITY

Observations

Magnetic capture

Direct collisions

Conclusions

Statistics: compare metallicities

Effect of metallicity

- Z has influence, but not dramatic
- Very low Z produces no systems with P_{orb} < 20 min
- Each 11-min binary should have 10-100 20-min counterparts

10⁷ binaries

UNIVERSITY

Observations

Magnetic capture

Direct collisions

Conclusions

Statistics: compare magnetic-braking strengths

- Lower period limit increases
- Unrealistically strong MB needed to get systems below 20 min

Observations

Magnetic capture

Direct collisions

Conclusions

Statistics: compare magnetic-braking prescriptions

Different MB 'law'

- Use more realistic, saturated MB
- Lower limit for saturated MB similar to that for no MB
- No systems below ~ 70 min

UNIVERSET 1

Conclusions

The magnetic-capture scenario cannot produce a sufficient number of ultra-compact X-ray binaries, because

- The initial-period range is very narrow
- The initial-mass range is narrow
- Evolution at ultra-short period is fast
- Often, P_{min} is reached after a Hubble time
- Magnetic braking must be unrealistically strong

Observations

Magnetic capture

Direct collisions

Conclusions

Scenario 2: Direct collisions

Star collisions occur in GCs

- Star density up to 10⁶ times higher than in solar neighbourhood
- Probability of collisions 10¹² times higher
- Direct collisions most likely for subgiants
- Binary with NS and core of subgiant is formed

troduction	Observations	Magnetic capture	Direct collisions
			0000

After the collision

- A NS-WD binary is formed
- Gravitational radiation shrinks the orbit
- Orbital period increases as soon as mass transfer starts
- Observed X-ray binaries should always have positive P
- The 11-min system has a measured $\dot{P}/P = -1.8 \pm 0.3 \times 10^{-15} \text{s}^{-1}$

Conclusions

troduction	Observations	Magnetic capture	Direct collisions
			0000

After the collision

- A NS-WD binary is formed
- Gravitational radiation shrinks the orbit
- Orbital period increases as soon as mass transfer starts
- Observed X-ray binaries should always have positive P
- The 11-min system has a measured $\dot{P}/P = -1.8 \pm 0.3 \times 10^{-15} \text{s}^{-1}$

Conclusions

Introduction	Observations	Magnetic capture	Direct collisions	Conclusions
			0000	

After the collision

- A NS-WD binary is formed
- Gravitational radiation shrinks the orbit
- Orbital period increases as soon as mass transfer starts
- Observed X-ray binaries should always have positive P
- The 11-min system has a measured $\dot{P}/P = -1.8 \pm 0.3 \times 10^{-15} \text{s}^{-1}$

Introduction	Observations	Magnetic capture	Direct collisions	Conclusions
			0000	

- Open/closed symbols: 0.8, 0.9 M_☉ star
- Triangles, squares and circles show how far star was evolved
- Symbol size scales with collision probability
- Dashed lines for $1.4 + 0.25 M_{\odot}$
- Hashed area for $M_{\rm tot} \pm 0.2 \, M_{\odot}$

Lombardi et al., 2006

Conclusions

Magnetic capture

- Magnetic capture produces too few ultra-compact X-ray binaries
- More realistic, weaker magnetic-braking laws predict no UCXBs at all
- Magnetic capture cannot explain the observations

Stellar collisions

- (Sub)giant collides with neutron star and forms NS-WD binary
- Gravitational waves cause orbital shrinkage until mass transfer starts
- P must be positive
- Measured negative P should then be explained by acceleration

